Statistical Methods for Analysis with Missing Data

Lecture 16: pattern-mixture models (continued), sensitivity analysis

Mauricio Sadinle

Department of Biostatistics

W UNIVERSITY of WASHINGTON

Previous Lecture

Introduction to

- ▶ The fundamental issue of non-identifiability
- ► General strategy for identification
- ▶ Pattern-mixture models

Today's Lecture

- Common identifying assumptions for pattern-mixture models
 - Reading: Chapter 6 of the lecture notes of Davidian and Tsiatis
- Itemwise conditionally independent nonresponse
- Properties of classes of full-data distributions
- Sensitivity analysis
 - ▶ Reading: Chapter 7 of the lecture notes of Davidian and Tsiatis

Outline

Recap from Previous Lecture

Common Identifying Assumptions for Pattern-Mixture Models

Itemwise Conditionally Independent Nonresponse

Properties of Classes of Full-Data Distributions

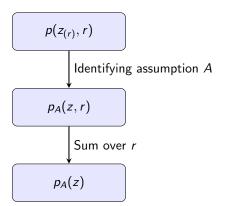
Sensitivity Analysis

Moving Away from MAR?

- ▶ In which direction do we go??
- ▶ Remember: there is a universe of missing-data assumptions:

Identification Strategies

- Inference with missing data is impossible without identification assumptions
- Identification strategies generally follow this structure:



Pattern-Mixture Models

- ▶ Pattern-mixture models (Little, JASA 1993) provide a transparent way of specifying missing data assumptions
- ▶ The pattern-mixture model factorization explicitly reveals:

$$p(z) = \sum_{r \in \{0,1\}^K} \overbrace{p(z_{(\bar{r})} \mid z_{(r)}, r)}^{\text{needs identifying assumption}} \underbrace{p(z_{(r)} \mid r)p(r)}_{\text{can be estimated from data}}$$

- Explicitly shows what needs identifying assumptions and what can be obtained from data alone
- ▶ Identifying assumptions explicitly or implicitly amount to constructing $\{p(z_{(\bar{r})} \mid z_{(r)}, r)\}_r$ from $\{p(z_{(r)}, r)\}_r$

Dropout in Longitudinal Study

If missingness only comes from subjects dropping out

Missingness patterns are uniquely summarized by the dropout time

$$D = 1 + \sum_{j=1}^{T} R_j$$

▶ The observed data are obtained as realizations of

$$(Z_{(D)},D)$$

- ▶ If D=d, $Z_{(d)}=(Z_1,\ldots,Z_{d-1})$ and $Z_{(\bar{d})}=(Z_d,\ldots,Z_T)$
- Pattern-mixture model requires modeling the observed-data distribution:
 - p(D = d): simply take empirical frequency
 - ▶ $p(z_{(d)} \mid D = d)$: depends on variables' types

Identifying Assumptions for PMMs Under Dropout

- ▶ In general, how to obtain $\{p(z_{(\bar{d})} \mid z_{(d)}, d)\}_d$ from $\{p(z_{(d)}, d)\}_d$?
- ▶ Note that

$$p(z_{(\bar{d})} \mid z_{(d)}, d) = \prod_{\ell=d}^{l} p(z_{\ell} \mid z_{(\ell)}, d)$$

- ightharpoonup Example: for T=3, we need to identify:
 - ▶ If D = 3,

$$p(z_{(\bar{3})} \mid z_{(3)}, D = 3) = p(z_3 \mid z_1, z_2, D = 3)$$

▶ If
$$D = 2$$
,

$$p(z_{(\bar{2})} \mid z_{(2)}, D=2) = p(z_2 \mid z_1, D=2)p(z_3 \mid z_1, z_2, D=2)$$

Identifying Assumptions for PMMs Under Dropout

- ▶ In general, how to obtain $\{p(z_{(\bar{d})} \mid z_{(d)}, d)\}_d$ from $\{p(z_{(d)}, d)\}_d$?
- ▶ Note that

$$p(z_{(\bar{d})} \mid z_{(d)}, d) = \prod_{\ell=d}^{l} p(z_{\ell} \mid z_{(\ell)}, d)$$

- **Example**: for T = 3, we need to identify:
 - ▶ If D = 3,

$$p(z_{(\bar{3})} \mid z_{(3)}, D=3) = p(z_3 \mid z_1, z_2, D=3)$$

▶ If
$$D = 2$$
,

$$p(z_{(\bar{2})} \mid z_{(2)}, D=2) = p(z_2 \mid z_1, D=2)p(z_3 \mid z_1, z_2, D=2)$$

Identifying Assumptions for PMMs Under Dropout

- ▶ In general, how to obtain $\{p(z_{(\bar{d})} \mid z_{(d)}, d)\}_d$ from $\{p(z_{(d)}, d)\}_d$?
- ▶ Note that

$$p(z_{(\bar{d})} \mid z_{(d)}, d) = \prod_{\ell=d}' p(z_{\ell} \mid z_{(\ell)}, d)$$

- ▶ Example: for T = 3, we need to identify:
 - ▶ If D = 3,

$$p(z_{(\bar{3})} \mid z_{(3)}, D=3) = p(z_3 \mid z_1, z_2, D=3)$$

▶ If D = 2,

$$p(z_{(\bar{2})} \mid z_{(2)}, D=2) = p(z_2 \mid z_1, D=2)p(z_3 \mid z_1, z_2, D=2)$$

Outline

Recap from Previous Lecture

Common Identifying Assumptions for Pattern-Mixture Models

Itemwise Conditionally Independent Nonresponse

Properties of Classes of Full-Data Distributions

Sensitivity Analysis

$$p_{CC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D=T+1),$$
 for all $\ell\geq d,\ d=1,\ldots,T.$

- ightharpoonup Distributions for D=T+1 are identifiable from complete cases
- ▶ Example: for T = 3, we have:

For
$$D=3$$
,

$$p_{CC}(z_3 \mid z_1, z_2, D = 3) \equiv p(z_3 \mid z_1, z_2, D = 4)$$

▶ If
$$D = 2$$

$$p_{CC}(z_2 \mid z_1, D=2) \equiv p(z_2 \mid z_1, D=4)$$

$$p_{CC}(z_3 \mid z_1, z_2, D = 2) \equiv p(z_3 \mid z_1, z_2, D = 4)$$

$$ho_{CC}(z_\ell\mid z_{(\ell)},D=d)\equiv
ho(z_\ell\mid z_{(\ell)},D=T+1),$$
 for all $\ell\geq d,\ d=1,\ldots,T.$

- lacktriangle Distributions for D=T+1 are identifiable from complete cases
- ightharpoonup Example: for T=3, we have:

For
$$D = 3$$
,

$$p_{CC}(z_3 \mid z_1, z_2, D = 3) \equiv p(z_3 \mid z_1, z_2, D = 4)$$

• If
$$D = 2$$
,

$$p_{CC}(z_2 \mid z_1, D=2) \equiv p(z_2 \mid z_1, D=4)$$

$$p_{CC}(z_3 \mid z_1, z_2, D = 2) \equiv p(z_3 \mid z_1, z_2, D = 4)$$

$$ho_{CC}(z_\ell\mid z_{(\ell)},D=d)\equiv
ho(z_\ell\mid z_{(\ell)},D=T+1),$$
 for all $\ell\geq d,\ d=1,\ldots,T.$

- lacktriangle Distributions for D=T+1 are identifiable from complete cases
- **Example:** for T = 3, we have:
 - For D=3.

$$p_{CC}(z_3 \mid z_1, z_2, D = 3) \equiv p(z_3 \mid z_1, z_2, D = 4)$$

▶ If
$$D = 2$$
,

$$p_{CC}(z_2 \mid z_1, D = 2) \equiv p(z_2 \mid z_1, D = 4)$$

$$p_{CC}(z_3 \mid z_1, z_2, D = 2) \equiv p(z_3 \mid z_1, z_2, D = 4)$$

$$p_{CC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D=T+1),$$
 for all $\ell\geq d,\ d=1,\ldots,T.$

- ▶ Distributions for D = T + 1 are identifiable from complete cases
- **Example:** for T = 3, we have:

For
$$D=3$$
,

$$p_{CC}(z_3 \mid z_1, z_2, D = 3) \equiv p(z_3 \mid z_1, z_2, D = 4)$$

▶ If
$$D = 2$$
,

$$p_{CC}(z_2 \mid z_1, D=2) \equiv p(z_2 \mid z_1, D=4)$$

$$p_{CC}(z_3 \mid z_1, z_2, D = 2) \equiv p(z_3 \mid z_1, z_2, D = 4)$$

$$p_{CC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D=T+1),$$
 for all $\ell\geq d,\ d=1,\ldots,T.$

- lacktriangle Distributions for D=T+1 are identifiable from complete cases
- **Example:** for T = 3, we have:

▶ For
$$D = 3$$
,

$$p_{CC}(z_3 \mid z_1, z_2, D=3) \equiv p(z_3 \mid z_1, z_2, D=4)$$

▶ If
$$D = 2$$
,

$$p_{CC}(z_2 \mid z_1, D=2) \equiv p(z_2 \mid z_1, D=4)$$

$$p_{CC}(z_3 \mid z_1, z_2, D = 2) \equiv p(z_3 \mid z_1, z_2, D = 4)$$

$$p_{NC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D=\ell+1),$$
 for all $\ell\geq d,\ d=1,\ldots,T.$

- ▶ Among observations with $D = \ell + 1$ we get to observe z_ℓ and $z_{(\ell)}$
- ▶ We could think that observations with $D = \ell + 1$ are the best for basing extrapolation of the values of Z_{ℓ}
 - For example, among observations where Z_ℓ is available, those who dropout at time $\ell+1$ might be the most similar to those that dropout at time ℓ
- ▶ HW4: say T = 3, write down this restriction for $\ell \ge d$, d = 1, 2, 3.

$$p_{NC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D=\ell+1),$$
 for all $\ell\geq d,\ d=1,\ldots,T$.

- ▶ Among observations with $D = \ell + 1$ we get to observe z_ℓ and $z_{(\ell)}$
- ▶ We could think that observations with $D = \ell + 1$ are the best for basing extrapolation of the values of Z_{ℓ}
 - For example, among observations where Z_ℓ is available, those who dropout at time $\ell+1$ might be the most similar to those that dropout at time ℓ
- ▶ HW4: say T = 3, write down this restriction for $\ell \ge d$, d = 1, 2, 3.

$$p_{NC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D=\ell+1),$$
 for all $\ell\geq d,\ d=1,\ldots,T$.

- ▶ Among observations with $D = \ell + 1$ we get to observe z_ℓ and $z_{(\ell)}$
- ▶ We could think that observations with $D = \ell + 1$ are the best for basing extrapolation of the values of Z_{ℓ}
 - For example, among observations where Z_ℓ is available, those who dropout at time $\ell+1$ might be the most similar to those that dropout at time ℓ
- ▶ HW4: say T = 3, write down this restriction for $\ell \ge d$, d = 1, 2, 3.

$$p_{NC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D=\ell+1),$$
 for all $\ell\geq d,\ d=1,\ldots,T$.

- ▶ Among observations with $D = \ell + 1$ we get to observe z_ℓ and $z_{(\ell)}$
- ▶ We could think that observations with $D = \ell + 1$ are the best for basing extrapolation of the values of Z_{ℓ}
 - For example, among observations where Z_ℓ is available, those who dropout at time $\ell+1$ might be the most similar to those that dropout at time ℓ
- ▶ HW4: say T = 3, write down this restriction for $\ell \ge d$, d = 1, 2, 3.

$$p_{NC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D=\ell+1),$$
 for all $\ell\geq d,\ d=1,\ldots,T.$

- ▶ Among observations with $D = \ell + 1$ we get to observe z_ℓ and $z_{(\ell)}$
- ▶ We could think that observations with $D = \ell + 1$ are the best for basing extrapolation of the values of Z_{ℓ}
 - For example, among observations where Z_ℓ is available, those who dropout at time $\ell+1$ might be the most similar to those that dropout at time ℓ
- ▶ HW4: say T = 3, write down this restriction for $\ell \ge d$, d = 1, 2, 3.

$$p_{AC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D>\ell),$$
 for all $\ell\geq d,\ d=1,\ldots,T.$

- ▶ Among all observations with $D > \ell$ we get to observe z_{ℓ} and $z_{(\ell)}$
- ▶ We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_{ℓ}
- ▶ HW4: say T = 3, write down this restriction for $\ell \ge d$, d = 1, 2, 3.
- ► HW4: under monotone nonresponse, the AC assumption is equivalent to MAR

$$p_{AC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D>\ell),$$
 for all $\ell\geq d,\ d=1,\ldots,T.$

- ▶ Among all observations with $D > \ell$ we get to observe z_{ℓ} and $z_{(\ell)}$
- ▶ We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_{ℓ}
- ▶ HW4: say T = 3, write down this restriction for $\ell \ge d$, d = 1, 2, 3.
- ► HW4: under monotone nonresponse, the AC assumption is equivalent to MAR

$$p_{AC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D>\ell),$$
 for all $\ell>d$, $d=1,\ldots,T$.

- ▶ Among all observations with $D > \ell$ we get to observe z_{ℓ} and $z_{(\ell)}$
- ▶ We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_{ℓ}
- ▶ HW4: say T = 3, write down this restriction for $\ell \ge d$, d = 1, 2, 3.
- ► HW4: under monotone nonresponse, the AC assumption is equivalent to MAR

$$p_{AC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D>\ell),$$
 for all $\ell>d$, $d=1,\ldots,T$.

- ▶ Among all observations with $D > \ell$ we get to observe z_{ℓ} and $z_{(\ell)}$
- ▶ We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_{ℓ}
- ▶ HW4: say T = 3, write down this restriction for $\ell \ge d$, d = 1, 2, 3.
- ► HW4: under monotone nonresponse, the AC assumption is equivalent to MAR

$$p_{AC}(z_\ell\mid z_{(\ell)},D=d)\equiv p(z_\ell\mid z_{(\ell)},D>\ell),$$
 for all $\ell>d$, $d=1,\ldots,T$.

- ▶ Among all observations with $D > \ell$ we get to observe z_{ℓ} and $z_{(\ell)}$
- ▶ We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_{ℓ}
- ▶ HW4: say T = 3, write down this restriction for $\ell \ge d$, d = 1, 2, 3.
- ► HW4: under monotone nonresponse, the AC assumption is equivalent to MAR

Outline

Recap from Previous Lecture

Common Identifying Assumptions for Pattern-Mixture Models

Itemwise Conditionally Independent Nonresponse

Properties of Classes of Full-Data Distributions

Sensitivity Analysis

Itemwise Conditionally Independent Nonresponse

- ▶ Identification assumptions can also be expressed as restrictions on the full-data distribution
- ► The itemwise conditionally independent nonresponse (ICIN)¹ assumption says that

$$Z_j \perp\!\!\!\perp R_j \mid Z_{-j}, R_{-j}, \quad \text{for all} \quad j=1,\ldots,K,$$
 where $Z_{-j}=(\ldots,Z_{j-1},Z_{j+1},\ldots), \ R_{-j}=(\ldots,R_{j-1},R_{j+1},\ldots)$

 \triangleright Remark: Z_i and R_i being conditionally independent does not imply

¹Sadinle & Reiter (Biometrika 2017): https://doi.org/10.1093/biomet/asw063

Itemwise Conditionally Independent Nonresponse

- ▶ Identification assumptions can also be expressed as restrictions on the full-data distribution
- ► The itemwise conditionally independent nonresponse (ICIN)¹ assumption says that

$$Z_j \perp \!\!\! \perp R_j \mid Z_{-j}, R_{-j}, \quad \text{for all} \quad j=1,\ldots,K,$$
 where $Z_{-j}=(\ldots,Z_{j-1},Z_{j+1},\ldots), \; R_{-j}=(\ldots,R_{j-1},R_{j+1},\ldots)$

 \triangleright Remark: Z_i and R_i being conditionally independent does not imply marginal independence

¹Sadinle & Reiter (Biometrika 2017): https://doi.org/10.1093/biomet/asw063

ICIN Distribution

- ► Sadinle & Reiter showed how to construct a full-data distribution that encodes ICIN given an observed-data distribution
- ► For each missingness pattern $r \in \{0,1\}^K$, given $p(z_{(r)},r) > 0$, let the function $\eta_r : \mathcal{Z}_{(r)} \mapsto \mathbb{R}$ be defined recursively as

$$\eta_r(z_{(r)}) = \log p(z_{(r)}, r) - \log \int_{\mathcal{Z}_{(\bar{r})}} \exp \left\{ \sum_{\bar{r}' \prec \bar{r}} \eta_{r'}(z_{(r')}) \right\} \mu(dz_{(\bar{r})}).$$

Then

$$p_{ICIN}(z,r) = \exp\left\{\sum_{\vec{r}' \preceq \vec{r}} \eta_{r'}(z_{(r')})\right\}$$
$$= p(z_{(r)},r) \frac{\exp\left\{\sum_{\vec{r}' \prec \vec{r}} \eta_{r'}(z_{(r')})\right\}}{\int_{\mathcal{Z}_{(\vec{r})}} \exp\left\{\sum_{\vec{r}' \prec \vec{r}} \eta_{r'}(z_{(r')})\right\} \mu(dz_{(\vec{r})})}$$

► Therefore ICIN can be seen as a restriction for pattern-mixture models!

ICIN Distribution

- ► Sadinle & Reiter showed how to construct a full-data distribution that encodes ICIN given an observed-data distribution
- ► For each missingness pattern $r \in \{0,1\}^K$, given $p(z_{(r)},r) > 0$, let the function $\eta_r : \mathcal{Z}_{(r)} \mapsto \mathbb{R}$ be defined recursively as

$$\eta_r(z_{(r)}) = \log p(z_{(r)}, r) - \log \int_{\mathcal{Z}_{(\bar{r})}} \exp \left\{ \sum_{\bar{r}' \prec \bar{r}} \eta_{r'}(z_{(r')}) \right\} \mu(dz_{(\bar{r})}).$$

Then

$$p_{ICIN}(z,r) = \exp\left\{\sum_{\vec{r}' \preceq \vec{r}} \eta_{r'}(z_{(r')})\right\}$$

$$= p(z_{(r)},r) \frac{\exp\left\{\sum_{\vec{r}' \prec \vec{r}} \eta_{r'}(z_{(r')})\right\}}{\int_{\mathcal{Z}_{(\vec{r})}} \exp\left\{\sum_{\vec{r}' \prec \vec{r}} \eta_{r'}(z_{(r')})\right\} \mu(dz_{(\vec{r})})}$$

Therefore ICIN can be seen as a restriction for pattern-mixture models!

Outline

Recap from Previous Lecture

Common Identifying Assumptions for Pattern-Mixture Models

Itemwise Conditionally Independent Nonresponse

Properties of Classes of Full-Data Distributions

Sensitivity Analysis

Properties of Full-Data Distributions

- Assumptions covered so far: MCAR, MAR, CC, NC, AC, ICIN
- Can we talk about properties of the implied classes of full-data distributions?²
 - Observational equivalence
 - Full-data identifiability
 - (Observed-data) identifiability
 - Nonparametric identifiability

²Taken from Sadinle & Reiter (forthcoming in Biometrika):

Observational Equivalence

- ► Two full-data distributions are said to be *observationally equivalent* if their implied observed-data distributions are the same
- ► This is, say I have two full-data distributions:

$$p_A(z_{(\bar{r})}, z_{(r)}, r)$$
 and $p_B(z_{(\bar{r})}, z_{(r)}, r)$.

lf

$$\int p_{A}(z_{(\bar{r})}, z_{(r)}, r) \ dz_{(\bar{r})} = \int p_{B}(z_{(\bar{r})}, z_{(r)}, r) \ dz_{(\bar{r})}$$

for all $(z_{(r)}, r)$, then they are observationally equivalent

- ► HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are observationally equivalent (under dropout)
- ▶ This is an important feature in *sensitivity analysis*, because differences in inferences will be due to the different identifying assumptions and not due to different fits to the observed data

Observational Equivalence

- ► Two full-data distributions are said to be *observationally equivalent* if their implied observed-data distributions are the same
- ▶ This is, say I have two full-data distributions:

$$p_A(z_{(\overline{r})}, z_{(r)}, r)$$
 and $p_B(z_{(\overline{r})}, z_{(r)}, r)$.

lf

$$\int p_{A}(z_{(\bar{r})}, z_{(r)}, r) \ dz_{(\bar{r})} = \int p_{B}(z_{(\bar{r})}, z_{(r)}, r) \ dz_{(\bar{r})}$$

for all $(z_{(r)}, r)$, then they are observationally equivalent

- ► HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are observationally equivalent (under dropout)
- ▶ This is an important feature in *sensitivity analysis*, because differences in inferences will be due to the different identifying assumptions and not due to different fits to the observed data

- ► Two full-data distributions are said to be *observationally equivalent* if their implied observed-data distributions are the same
- ▶ This is, say I have two full-data distributions:

$$p_A(z_{(\bar{r})},z_{(r)},r)$$
 and $p_B(z_{(\bar{r})},z_{(r)},r)$.

lf

$$\int p_{A}(z_{(\bar{r})},z_{(r)},r)\ dz_{(\bar{r})} = \int p_{B}(z_{(\bar{r})},z_{(r)},r)\ dz_{(\bar{r})}$$

- ► HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are observationally equivalent (under dropout)
- ▶ This is an important feature in *sensitivity analysis*, because differences in inferences will be due to the different identifying assumptions and not due to different fits to the observed data

- ► Two full-data distributions are said to be *observationally equivalent* if their implied observed-data distributions are the same
- ▶ This is, say I have two full-data distributions:

$$p_A(z_{(\bar{r})}, z_{(r)}, r)$$
 and $p_B(z_{(\bar{r})}, z_{(r)}, r)$.

lf

$$\int p_{A}(z_{(\bar{r})},z_{(r)},r)\ dz_{(\bar{r})} = \int p_{B}(z_{(\bar{r})},z_{(r)},r)\ dz_{(\bar{r})}$$

- ► HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are observationally equivalent (under dropout)
- ▶ This is an important feature in *sensitivity analysis*, because differences in inferences will be due to the different identifying assumptions and not due to different fits to the observed data!

- ► Two full-data distributions are said to be *observationally equivalent* if their implied observed-data distributions are the same
- ▶ This is, say I have two full-data distributions:

$$p_A(z_{(\overline{r})},z_{(r)},r)$$
 and $p_B(z_{(\overline{r})},z_{(r)},r)$.

lf

$$\int p_{A}(z_{(\bar{r})},z_{(r)},r)\ dz_{(\bar{r})} = \int p_{B}(z_{(\bar{r})},z_{(r)},r)\ dz_{(\bar{r})}$$

- ► HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are observationally equivalent (under dropout)
- ▶ This is an important feature in *sensitivity analysis*, because differences in inferences will be due to the different identifying assumptions and not due to different fits to the observed data

- ► Two full-data distributions are said to be *observationally equivalent* if their implied observed-data distributions are the same
- ▶ This is, say I have two full-data distributions:

$$p_A(z_{(\overline{r})}, z_{(r)}, r)$$
 and $p_B(z_{(\overline{r})}, z_{(r)}, r)$.

lf

$$\int p_{A}(z_{(\bar{r})},z_{(r)},r)\ dz_{(\bar{r})} = \int p_{B}(z_{(\bar{r})},z_{(r)},r)\ dz_{(\bar{r})}$$

- ► HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are observationally equivalent (under dropout)
- ▶ This is an important feature in *sensitivity analysis*, because differences in inferences will be due to the different identifying assumptions and not due to different fits to the observed data!

- $ightharpoonup \mathcal{C}_{\Theta}$: class of full-data distributions
- ightharpoonup Θ : parameter space, either finite- or infinite-dimensional
- \triangleright Say we were able to observe Z regardless of the value of R
- ▶ Identifiability of C_{Θ} in the usual sense (e.g., Lehmann & Casella 1998, p. 24) here is referred to as *full-data identifiability*
- ▶ A class of full-data distributions \mathcal{C}_{Θ} is said to be *full-data identifiable* if there exists a bijection from Θ to \mathcal{C}_{Θ}
- ► Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

- $ightharpoonup \mathcal{C}_{\Theta}$: class of full-data distributions
- ▶ Θ: parameter space, either finite- or infinite-dimensional
- \triangleright Say we were able to observe Z regardless of the value of R
- ▶ Identifiability of C_{Θ} in the usual sense (e.g., Lehmann & Casella 1998, p. 24) here is referred to as *full-data identifiability*
- ▶ A class of full-data distributions \mathcal{C}_{Θ} is said to be *full-data identifiable* if there exists a bijection from Θ to \mathcal{C}_{Θ}
- ► Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

- $ightharpoonup \mathcal{C}_{\Theta}$: class of full-data distributions
- ▶ Θ: parameter space, either finite- or infinite-dimensional
- ▶ Say we were able to observe Z regardless of the value of R
- ▶ Identifiability of C_{Θ} in the usual sense (e.g., Lehmann & Casella 1998, p. 24) here is referred to as *full-data identifiability*
- ▶ A class of full-data distributions \mathcal{C}_{Θ} is said to be *full-data identifiable* if there exists a bijection from Θ to \mathcal{C}_{Θ}
- ► Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

- $ightharpoonup \mathcal{C}_{\Theta}$: class of full-data distributions
- Θ: parameter space, either finite- or infinite-dimensional
- ▶ Say we were able to observe Z regardless of the value of R
- ▶ Identifiability of C_{Θ} in the usual sense (e.g., Lehmann & Casella 1998, p. 24) here is referred to as *full-data identifiability*
- ▶ A class of full-data distributions \mathcal{C}_{Θ} is said to be *full-data identifiable* if there exists a bijection from Θ to \mathcal{C}_{Θ}
- ► Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

- $ightharpoonup \mathcal{C}_{\Theta}$: class of full-data distributions
- Θ: parameter space, either finite- or infinite-dimensional
- ▶ Say we were able to observe Z regardless of the value of R
- ▶ Identifiability of C_{Θ} in the usual sense (e.g., Lehmann & Casella 1998, p. 24) here is referred to as *full-data identifiability*
- ▶ A class of full-data distributions \mathcal{C}_{Θ} is said to be *full-data identifiable* if there exists a bijection from Θ to \mathcal{C}_{Θ}
- ► Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

- $ightharpoonup \mathcal{C}_{\Theta}$: class of full-data distributions
- Θ: parameter space, either finite- or infinite-dimensional
- ▶ Say we were able to observe Z regardless of the value of R
- ▶ Identifiability of C_{Θ} in the usual sense (e.g., Lehmann & Casella 1998, p. 24) here is referred to as *full-data identifiability*
- ▶ A class of full-data distributions \mathcal{C}_{Θ} is said to be *full-data identifiable* if there exists a bijection from Θ to \mathcal{C}_{Θ}
- ► Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

- $lackbox{ obs}(\mathcal{C}_\Theta)$: the class of observed-data distributions implied by \mathcal{C}_Θ
- ▶ A class of full-data distributions \mathcal{C}_{Θ} is said to be *identifiable* if there exist bijections from Θ to \mathcal{C}_{Θ} and from obs (\mathcal{C}_{Θ}) to \mathcal{C}_{Θ}
 - ▶ First bijection: full-data identifiability for C_{Θ}
 - ▶ Second bijection: we need a unique way to go back and forth from $obs(C_{\Theta})$ to C_{Θ}
 - ▶ These imply a third bijection between obs(\mathcal{C}_{Θ}) and Θ : the common notion of identifiability applied to obs(\mathcal{C}_{Θ})

- $lackbox{ obs}(\mathcal{C}_\Theta)$: the class of observed-data distributions implied by \mathcal{C}_Θ
- ▶ A class of full-data distributions \mathcal{C}_{Θ} is said to be *identifiable* if there exist bijections from Θ to \mathcal{C}_{Θ} and from obs (\mathcal{C}_{Θ}) to \mathcal{C}_{Θ}
 - ightharpoonup First bijection: full-data identifiability for \mathcal{C}_{Θ}
 - ▶ Second bijection: we need a unique way to go back and forth from $obs(C_{\Theta})$ to C_{Θ}
 - ▶ These imply a third bijection between $obs(C_{\Theta})$ and Θ : the common notion of identifiability applied to $obs(C_{\Theta})$

- $lackbox{ obs}(\mathcal{C}_\Theta)$: the class of observed-data distributions implied by \mathcal{C}_Θ
- ▶ A class of full-data distributions \mathcal{C}_{Θ} is said to be *identifiable* if there exist bijections from Θ to \mathcal{C}_{Θ} and from obs (\mathcal{C}_{Θ}) to \mathcal{C}_{Θ}
 - lacktriangle First bijection: full-data identifiability for \mathcal{C}_{Θ}
 - ▶ Second bijection: we need a unique way to go back and forth from $obs(C_{\Theta})$ to C_{Θ}
 - ▶ These imply a third bijection between $obs(C_{\Theta})$ and Θ : the common notion of identifiability applied to $obs(C_{\Theta})$

- $lackbox{ obs}(\mathcal{C}_\Theta)$: the class of observed-data distributions implied by \mathcal{C}_Θ
- ▶ A class of full-data distributions \mathcal{C}_{Θ} is said to be *identifiable* if there exist bijections from Θ to \mathcal{C}_{Θ} and from obs (\mathcal{C}_{Θ}) to \mathcal{C}_{Θ}
 - lacktriangle First bijection: full-data identifiability for \mathcal{C}_Θ
 - ▶ Second bijection: we need a unique way to go back and forth from $obs(C_{\Theta})$ to C_{Θ}
 - ▶ These imply a third bijection between $obs(C_{\Theta})$ and Θ : the common notion of identifiability applied to $obs(C_{\Theta})$

- $lackbox{ obs}(\mathcal{C}_\Theta)$: the class of observed-data distributions implied by \mathcal{C}_Θ
- ▶ A class of full-data distributions \mathcal{C}_{Θ} is said to be *identifiable* if there exist bijections from Θ to \mathcal{C}_{Θ} and from obs (\mathcal{C}_{Θ}) to \mathcal{C}_{Θ}
 - lacktriangle First bijection: full-data identifiability for \mathcal{C}_Θ
 - ▶ Second bijection: we need a unique way to go back and forth from $obs(C_{\Theta})$ to C_{Θ}
 - ▶ These imply a third bijection between obs(\mathcal{C}_{Θ}) and Θ : the common notion of identifiability applied to obs(\mathcal{C}_{Θ})

G: all possible observed-data distributions

- Say obs(C_{Θ}) is a proper subset of $G: C_{\Theta}$ imposes parametric restrictions on what could be nonparametrically recovered from observed data alone
- ▶ C_{Θ} is said to be *nonparametrically identifiable* if it is identifiable and obs $(C_{\Theta}) = \mathcal{G}$
- ▶ Also known as nonparametric saturation or just-identification (Robins 1997, Vansteelandt et al. 2006, Hoonhout & Ridder 2018)
- ▶ Bijection between Θ and obs $(\mathcal{C}_{\Theta}) = \mathcal{G}$: we can think of a nonparametrically identifiable class as being indexed by the set of all observed-data distributions \mathcal{G}

- G: all possible observed-data distributions
- ▶ Say obs(\mathcal{C}_{Θ}) is a proper subset of \mathcal{G} : \mathcal{C}_{Θ} imposes parametric restrictions on what could be nonparametrically recovered from observed data alone
- ▶ C_{Θ} is said to be *nonparametrically identifiable* if it is identifiable and obs $(C_{\Theta}) = \mathcal{G}$
- ▶ Also known as nonparametric saturation or just-identification (Robins 1997, Vansteelandt et al. 2006, Hoonhout & Ridder 2018)
- ▶ Bijection between Θ and obs $(\mathcal{C}_{\Theta}) = \mathcal{G}$: we can think of a nonparametrically identifiable class as being indexed by the set of all observed-data distributions \mathcal{G}

- G: all possible observed-data distributions
- ▶ Say obs(\mathcal{C}_{Θ}) is a proper subset of \mathcal{G} : \mathcal{C}_{Θ} imposes parametric restrictions on what could be nonparametrically recovered from observed data alone
- ▶ C_{Θ} is said to be *nonparametrically identifiable* if it is identifiable and obs $(C_{\Theta}) = \mathcal{G}$
- ▶ Also known as nonparametric saturation or just-identification (Robins 1997, Vansteelandt et al. 2006, Hoonhout & Ridder 2018)
- ▶ Bijection between Θ and obs $(\mathcal{C}_{\Theta}) = \mathcal{G}$: we can think of a nonparametrically identifiable class as being indexed by the set of all observed-data distributions \mathcal{G}

- G: all possible observed-data distributions
- ▶ Say obs(\mathcal{C}_{Θ}) is a proper subset of \mathcal{G} : \mathcal{C}_{Θ} imposes parametric restrictions on what could be nonparametrically recovered from observed data alone
- ▶ C_{Θ} is said to be *nonparametrically identifiable* if it is identifiable and obs $(C_{\Theta}) = \mathcal{G}$
- ► Also known as nonparametric saturation or just-identification (Robins 1997, Vansteelandt et al. 2006, Hoonhout & Ridder 2018)
- ▶ Bijection between Θ and obs $(\mathcal{C}_{\Theta}) = \mathcal{G}$: we can think of a nonparametrically identifiable class as being indexed by the set of all observed-data distributions \mathcal{G}

- G: all possible observed-data distributions
- ▶ Say obs(\mathcal{C}_{Θ}) is a proper subset of \mathcal{G} : \mathcal{C}_{Θ} imposes parametric restrictions on what could be nonparametrically recovered from observed data alone
- ▶ C_{Θ} is said to be *nonparametrically identifiable* if it is identifiable and obs $(C_{\Theta}) = \mathcal{G}$
- ► Also known as nonparametric saturation or just-identification (Robins 1997, Vansteelandt et al. 2006, Hoonhout & Ridder 2018)
- ▶ Bijection between Θ and obs $(\mathcal{C}_{\Theta}) = \mathcal{G}$: we can think of a nonparametrically identifiable class as being indexed by the set of all observed-data distributions \mathcal{G}

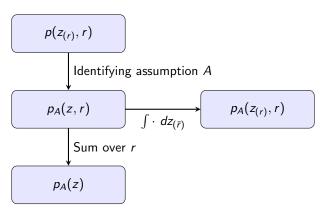
- ► Two nonparametrically identifiable classes are necessarily observationally equivalent
- Nonparametric identification additionally guarantees that these restrictions do not constrain the observed-data distribution, and therefore cannot be rejected based on the observed data
- Nonparametric identification is therefore a basic desirable property, particularly useful for comparing inferences under different missing data assumptions
- ► HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are nonparametric identified
- ► Fun fact: MAR and ICIN lead to nonparametric identification

- Two nonparametrically identifiable classes are necessarily observationally equivalent
- Nonparametric identification additionally guarantees that these restrictions do not constrain the observed-data distribution, and therefore cannot be rejected based on the observed data
- Nonparametric identification is therefore a basic desirable property, particularly useful for comparing inferences under different missing data assumptions
- ► HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are nonparametric identified
- ► Fun fact: MAR and ICIN lead to nonparametric identification

- ► Two nonparametrically identifiable classes are necessarily observationally equivalent
- ▶ Nonparametric identification additionally guarantees that these restrictions do not constrain the observed-data distribution, and therefore cannot be rejected based on the observed data
- Nonparametric identification is therefore a basic desirable property, particularly useful for comparing inferences under different missing data assumptions
- ► HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are nonparametric identified
- ► Fun fact: MAR and ICIN lead to nonparametric identification

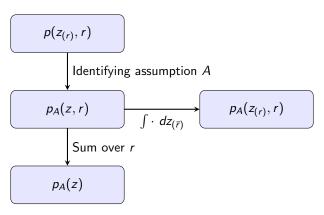
- ► Two nonparametrically identifiable classes are necessarily observationally equivalent
- Nonparametric identification additionally guarantees that these restrictions do not constrain the observed-data distribution, and therefore cannot be rejected based on the observed data
- Nonparametric identification is therefore a basic desirable property, particularly useful for comparing inferences under different missing data assumptions
- ► HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are nonparametric identified
- ► Fun fact: MAR and ICIN lead to nonparametric identification

- ► Two nonparametrically identifiable classes are necessarily observationally equivalent
- Nonparametric identification additionally guarantees that these restrictions do not constrain the observed-data distribution, and therefore cannot be rejected based on the observed data
- Nonparametric identification is therefore a basic desirable property, particularly useful for comparing inferences under different missing data assumptions
- ► HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are nonparametric identified
- ► Fun fact: MAR and ICIN lead to nonparametric identification



If $p_A(z_{(r)}, r) = p(z_{(r)}, r)$, then A leads to nonparametric identification:

- ▶ A does not impose restrictions on observed-data distribution
- ► A cannot be rejected from observed data alone



If $p_A(z_{(r)}, r) = p(z_{(r)}, r)$, then A leads to nonparametric identification:

- ▶ A does not impose restrictions on observed-data distribution
- ▶ A cannot be rejected from observed data alone

Outline

Recap from Previous Lecture

Common Identifying Assumptions for Pattern-Mixture Models

Itemwise Conditionally Independent Nonresponse

Properties of Classes of Full-Data Distributions

Sensitivity Analysis

Sensitivity Analysis

Based on Scharfstein et al. (Biometrics 2018)³:

- Local sensitivity analysis
 - Make a missing-data assumption A, explore changes in inferences implied by departures from A in a "neighborhood" around A
 - See Chapter 7 of the lecture notes of Davidian and Tsiatisfor more on this
- Global sensitivity analysis
 - Make completely different missing-data assumptions, explore inferences under all such assumptions
 - We will illustrate global sensitivity analysis with an example presented by Sadinle & Reiter (2017)

³https://doi.org/10.1111/biom.12729

The Slovenian Plebiscite Data Revisited

- Slovenians voted for independence from Yugoslavia in a plebiscite in 1991
- ► The Slovenian public opinion survey included these questions:
 - 1. Independence: Are you in favor of Slovenian independence?
 - 2. Secession: Are you in favor of Slovenia's secession from Yugoslavia?
 - 3. Attendance: Will you attend the plebiscite?
- Rubin, Stern and Vehovar (1995) analyzed these three questions under MAR
- ▶ Plebiscite results give us the proportions of non-attendants and attendants in favor of independence

The Slovenian Plebiscite Data Revisited

- Slovenians voted for independence from Yugoslavia in a plebiscite in 1991
- ▶ The Slovenian public opinion survey included these questions:
 - 1. Independence: Are you in favor of Slovenian independence?
 - 2. Secession: Are you in favor of Slovenia's secession from Yugoslavia?
 - 3. Attendance: Will you attend the plebiscite?
- Rubin, Stern and Vehovar (1995) analyzed these three questions under MAR
- ▶ Plebiscite results give us the proportions of non-attendants and attendants in favor of independence

The Slovenian Plebiscite Data Revisited

Table 1. SPO Survey Results (n = 2,074)

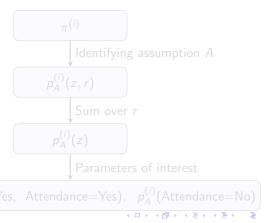
Secession	Attendance	Independence		
		Yes	No	Don't know
Yes	Yes	1,191	8	21
	No	8	0	4
	Don't Know	107	3	9
No	Yes	158	68	29
	No	7	14	3
	Don't Know	18	43	31
Don't Know	Yes	90	2	109
	No	1	2	25
	Don't Know	19	8	96

Taken from Rubin, Stern and Vehovar (JASA, 1995)

Slovenian Data: a Bayesian Approach

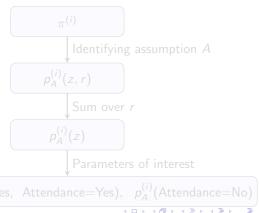
▶ Let
$$\pi_{z_{(r)},r} = p(z_{(r)},r), \quad \pi = \{\pi_{z_{(r)},r}\}$$

- ▶ Draw $\pi^{(i)}$ from posterior of π given the Slovenian data (problems 9 and 10 of HW3)
- ▶ Do, for i = 1, ..., m:



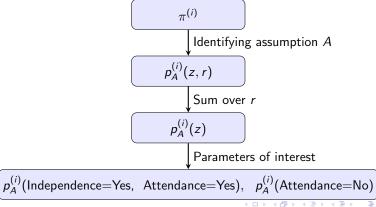
Slovenian Data: a Bayesian Approach

- ▶ Let $\pi_{z_{(r)},r} = p(z_{(r)},r)$, $\pi = \{\pi_{z_{(r)},r}\}$
- ▶ Draw $\pi^{(i)}$ from posterior of π given the Slovenian data (problems 9 and 10 of HW3)
- ightharpoonup Do, for $i = 1, \ldots, m$:



Slovenian Data: a Bayesian Approach

- ▶ Let $\pi_{z_{(r)},r} = p(z_{(r)},r)$, $\pi = \{\pi_{z_{(r)},r}\}$
- ▶ Draw $\pi^{(i)}$ from posterior of π given the Slovenian data (problems 9 and 10 of HW3)
- ightharpoonup Do, for $i = 1, \ldots, m$:



Global Sensitivity Analysis for The Slovenian Data

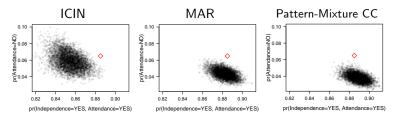


Figure: Samples from joint posterior distributions of p(Independence = Yes, Attendance = Yes) and p(Attendance = No). Red diamond: results of plebiscite.

▶ All of these identifying assumptions lead to nonparametric identifiability!

Global Sensitivity Analysis for The Slovenian Data

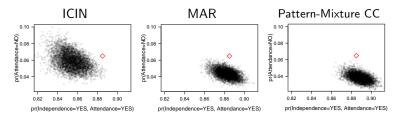


Figure: Samples from joint posterior distributions of p(Independence = Yes, Attendance = Yes) and p(Attendance = No). Red diamond: results of plebiscite.

► All of these identifying assumptions lead to nonparametric identifiability!

Summary

Main take-aways from today's lecture:

- ► Pattern-mixture models provide an alternative way of thinking about missing data
- Ensuring identifiability is key when moving away from MAR
- Nonparametric identifiability is an important and desirable property
- Sensitivity analyses are recommended

Summary

Main take-aways from this class:

- ► The fundamental problem of inference with missing data: it is impossible without extra, usually untestable, assumptions on how missingness arises
- ▶ Willing to assume MAR?: plethora of approaches readily available:
 - Frequentist likelihood-based inference (EM algorithm)
 - Bayesian inference (Data Augmentation / Gibbs samplers)
 - Multiple imputation (although worry about uncongeniality)
 - Inverse-probability weighting (also, double robust procedures)

(they also could handle nonignorable missingness – current area of research)

 Avoid ad-hoc approaches such as single imputation and complete-case analysis Thank you for your patience and participation!

THE END