Statistical Methods for Analysis with Missing Data

Lecture 16: pattern-mixture models (continued), sensitivity analysis

Mauricio Sadinle

Department of Biostatistics
WU UNIVERSITY of WASHINGTON

Previous Lecture

Introduction to

- The fundamental issue of non-identifiability
- General strategy for identification
- Pattern-mixture models

Today's Lecture

- Common identifying assumptions for pattern-mixture models
- Reading: Chapter 6 of the lecture notes of Davidian and Tsiatis
- Itemwise conditionally independent nonresponse
- Properties of classes of full-data distributions
- Sensitivity analysis
- Reading: Chapter 7 of the lecture notes of Davidian and Tsiatis

Outline

Recap from Previous Lecture

Common Identifying Assumptions for Pattern-Mixture Models

Itemwise Conditionally Independent Nonresponse

Properties of Classes of Full-Data Distributions

Sensitivity Analysis

Moving Away from MAR?

- In which direction do we go??
- Remember: there is a universe of missing-data assumptions:

Identification Strategies

- Inference with missing data is impossible without identification assumptions
- Identification strategies generally follow this structure:

Pattern-Mixture Models

- Pattern-mixture models (Little, JASA 1993) provide a transparent way of specifying missing data assumptions
- The pattern-mixture model factorization explicitly reveals:

$$
p(z)=\sum_{r \in\{0,1\}^{K}} \overbrace{p\left(z_{(\bar{r})} \mid z_{(r)}, r\right)}^{\text {needs identifying assumption }} \underbrace{p\left(z_{(r)} \mid r\right) p(r)}_{\text {can be estimated from data }}
$$

- Explicitly shows what needs identifying assumptions and what can be obtained from data alone
- Identifying assumptions explicitly or implicitly amount to constructing $\left\{p\left(z_{(r)} \mid z_{(r)}, r\right)\right\}_{r}$ from $\left\{p\left(z_{(r)}, r\right)\right\}_{r}$

Dropout in Longitudinal Study

If missingness only comes from subjects dropping out

- Missingness patterns are uniquely summarized by the dropout time

$$
D=1+\sum_{j=1}^{T} R_{j}
$$

- The observed data are obtained as realizations of

$$
\left(Z_{(D)}, D\right)
$$

- If $D=d, Z_{(d)}=\left(Z_{1}, \ldots, Z_{d-1}\right)$ and $Z_{(\bar{d})}=\left(Z_{d}, \ldots, Z_{T}\right)$
- Pattern-mixture model requires modeling the observed-data distribution:
- $p(D=d)$: simply take empirical frequency
- $p\left(z_{(d)} \mid D=d\right)$: depends on variables' types

Identifying Assumptions for PMMs Under Dropout

- In general, how to obtain $\left\{p\left(z_{(\bar{d})} \mid z_{(d)}, d\right)\right\}_{d}$ from $\left\{p\left(z_{(d)}, d\right)\right\}_{d}$?
- Note that

$$
p\left(z_{(\bar{d})} \mid z_{(d)}, d\right)=\prod_{\ell=d}^{T} p\left(z_{\ell} \mid z_{(\ell)}, d\right)
$$

- Example: for $T=3$, we need to identify:
= If $D=3$,
$p\left(z_{(\overline{3})} \mid z_{(3)}, D=3\right)=p\left(z_{3} \mid z_{1}, z_{2}, D=3\right)$
- If $D=2$,

$$
p\left(z_{(2)} \mid z_{(2)}, D=2\right)=p\left(z_{2} \mid z_{1}, D=2\right) p\left(z_{3} \mid z_{1}, z_{2}, D=2\right)
$$

Identifying Assumptions for PMMs Under Dropout

- In general, how to obtain $\left\{p\left(z_{(\bar{d})} \mid z_{(d)}, d\right)\right\}_{d}$ from $\left\{p\left(z_{(d)}, d\right)\right\}_{d}$?
- Note that

$$
p\left(z_{(\bar{d})} \mid z_{(d)}, d\right)=\prod_{\ell=d}^{T} p\left(z_{\ell} \mid z_{(\ell)}, d\right)
$$

- Example: for $T=3$, we need to identify:
- If $D=3$,

$$
p\left(z_{(\overline{3})} \mid z_{(3)}, D=3\right)=p\left(z_{3} \mid z_{1}, z_{2}, D=3\right)
$$

- If $D=2$,

$$
p\left(z_{(2)} \mid z_{(2)}, D=2\right)=p\left(z_{2} \mid z_{1}, D=2\right) p\left(z_{3} \mid z_{1}, z_{2}, D=2\right)
$$

Identifying Assumptions for PMMs Under Dropout

- In general, how to obtain $\left\{p\left(z_{(\bar{d})} \mid z_{(d)}, d\right)\right\}_{d}$ from $\left\{p\left(z_{(d)}, d\right)\right\}_{d}$?
- Note that

$$
p\left(z_{(\bar{d})} \mid z_{(d)}, d\right)=\prod_{\ell=d}^{T} p\left(z_{\ell} \mid z_{(\ell)}, d\right)
$$

- Example: for $T=3$, we need to identify:
- If $D=3$,

$$
p\left(z_{(\overline{3})} \mid z_{(3)}, D=3\right)=p\left(z_{3} \mid z_{1}, z_{2}, D=3\right)
$$

- If $D=2$,

$$
p\left(z_{(\overline{2})} \mid z_{(2)}, D=2\right)=p\left(z_{2} \mid z_{1}, D=2\right) p\left(z_{3} \mid z_{1}, z_{2}, D=2\right)
$$

Outline

Recap from Previous Lecture

Common Identifying Assumptions for Pattern-Mixture Models

Itemwise Conditionally Independent Nonresponse

Properties of Classes of Full-Data Distributions

Sensitivity Analysis

The Complete-Case Identifying Assumption

 Little (JASA 1993) proposed to assume:$$
p_{C C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D=T+1\right)
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Distributions for $D=T+1$ are identifiable from complete cases
- Example: for $T=3$, we have:

For $D=3$,

$$
\operatorname{Pcc}\left(z_{3} \mid z_{1}, z_{2}, D=3\right) \equiv p\left(z_{3} \mid z_{1}, z_{2}, D=4\right)
$$

- If $D=2$,
$\operatorname{pCC}\left(z_{2} \mid z_{1}, D=2\right) \equiv p\left(z_{2} \mid z_{1}, D=4\right)$

The Complete-Case Identifying Assumption

Little (JASA 1993) proposed to assume:

$$
p_{C C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D=T+1\right),
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Distributions for $D=T+1$ are identifiable from complete cases
- Example: for $T=3$, we have:
- For $D=3$,

$$
p_{C C}\left(z_{3} \mid z_{1}, z_{2}, D=3\right) \equiv p\left(z_{3} \mid z_{1}, z_{2}, D=4\right)
$$

$p_{C C}\left(z_{2} \mid z_{1}, D=2\right) \equiv p\left(z_{2} \mid z_{1}, D=4\right)$

The Complete-Case Identifying Assumption

 Little (JASA 1993) proposed to assume:$$
p_{C C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D=T+1\right)
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Distributions for $D=T+1$ are identifiable from complete cases
- Example: for $T=3$, we have:
- For $D=3$,

$$
\operatorname{pcc}\left(z_{3} \mid z_{1}, z_{2}, D=3\right) \equiv p\left(z_{3} \mid z_{1}, z_{2}, D=4\right)
$$

$\operatorname{pCC}\left(z_{2} \mid z_{1}, D=2\right) \equiv p\left(z_{2} \mid z_{1}, D=4\right)$

The Complete-Case Identifying Assumption

 Little (JASA 1993) proposed to assume:$$
p_{C C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D=T+1\right)
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Distributions for $D=T+1$ are identifiable from complete cases
- Example: for $T=3$, we have:
- For $D=3$,

$$
p_{\subset C}\left(z_{3} \mid z_{1}, z_{2}, D=3\right) \equiv p\left(z_{3} \mid z_{1}, z_{2}, D=4\right)
$$

- If $D=2$,

$$
p_{\subset \subset}\left(z_{2} \mid z_{1}, D=2\right) \equiv p\left(z_{2} \mid z_{1}, D=4\right)
$$

$p_{C C}\left(z_{3} \mid z_{1}, z_{2}, D=2\right) \equiv p\left(z_{3} \mid z_{1}, z_{2}, D=4\right)$

The Complete-Case Identifying Assumption

 Little (JASA 1993) proposed to assume:$$
p_{C C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D=T+1\right)
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Distributions for $D=T+1$ are identifiable from complete cases
- Example: for $T=3$, we have:
- For $D=3$,

$$
p_{\subset C}\left(z_{3} \mid z_{1}, z_{2}, D=3\right) \equiv p\left(z_{3} \mid z_{1}, z_{2}, D=4\right)
$$

- If $D=2$,

$$
\begin{gathered}
p_{\subset c}\left(z_{2} \mid z_{1}, D=2\right) \equiv p\left(z_{2} \mid z_{1}, D=4\right) \\
p_{\subset \subset}\left(z_{3} \mid z_{1}, z_{2}, D=2\right) \equiv p\left(z_{3} \mid z_{1}, z_{2}, D=4\right)
\end{gathered}
$$

The Neighboring-Case Identifying Assumption

The extrapolation distributions could also be obtained from the closest dropout pattern where ℓ is available:

$$
p_{N C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D=\ell+1\right),
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Among observations with $D=\ell+1$ we get to observe z_{ℓ} and $z_{(\ell)}$
v We could think that observations with $D=\ell+1$ are the best for basing extrapolation of the values of Z_{ℓ}
- For example, among observations where Z_{ℓ} is available, those who dropout at time $\ell+1$ might be the most similar to those that dropout at time ℓ
- HW4: say $T=3$, write down this restriction for $\ell \geq d, d=1,2,3$.

The Neighboring-Case Identifying Assumption

The extrapolation distributions could also be obtained from the closest dropout pattern where ℓ is available:

$$
p_{N C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D=\ell+1\right)
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Among observations with $D=\ell+1$ we get to observe z_{ℓ} and $z_{(\ell)}$
- We could think that observations with $D=\ell+1$ are the best for
basing extrapolation of the values of Z_{ℓ}
- For example, among observations where Z_{ℓ} is available, those who dropout at time $\ell+1$ might be the most similar to those that dropout at time ℓ

The Neighboring-Case Identifying Assumption

The extrapolation distributions could also be obtained from the closest dropout pattern where ℓ is available:

$$
p_{N C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D=\ell+1\right)
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Among observations with $D=\ell+1$ we get to observe z_{ℓ} and $z_{(\ell)}$
- We could think that observations with $D=\ell+1$ are the best for basing extrapolation of the values of Z_{ℓ}
- For example, among observations where Z_{ℓ} is available, those who dropout at time $\ell+1$ might be the most similar to those that dropout at time ℓ

The Neighboring-Case Identifying Assumption

The extrapolation distributions could also be obtained from the closest dropout pattern where ℓ is available:

$$
p_{N C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D=\ell+1\right)
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Among observations with $D=\ell+1$ we get to observe z_{ℓ} and $z_{(\ell)}$
- We could think that observations with $D=\ell+1$ are the best for basing extrapolation of the values of Z_{ℓ}
- For example, among observations where Z_{ℓ} is available, those who dropout at time $\ell+1$ might be the most similar to those that dropout at time ℓ
- HW4: say $T=3$, write down this restriction for $\ell \geq d, d=1,2,3$.

The Neighboring-Case Identifying Assumption

The extrapolation distributions could also be obtained from the closest dropout pattern where ℓ is available:

$$
p_{N C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D=\ell+1\right)
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Among observations with $D=\ell+1$ we get to observe z_{ℓ} and $z_{(\ell)}$
- We could think that observations with $D=\ell+1$ are the best for basing extrapolation of the values of Z_{ℓ}
- For example, among observations where Z_{ℓ} is available, those who dropout at time $\ell+1$ might be the most similar to those that dropout at time ℓ
- HW4: say $T=3$, write down this restriction for $\ell \geq d, d=1,2,3$.

The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases where ℓ is available:

$$
p_{A C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D>\ell\right),
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Among all observations with $D>\ell$ we get to observe z_{ℓ} and $z_{(\ell)}$
- We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_{ℓ}
\rightarrow HW4: say $T=3$, write down this restriction for $\ell \geq d, d=1,2,3$.
- HW4: under monotone nonresponse, the AC assumption is equivalent to MAR

The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases where ℓ is available:

$$
p_{A C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D>\ell\right)
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Among all observations with $D>\ell$ we get to observe z_{ℓ} and $z_{(\ell)}$
- We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_{ℓ}
- 'HW4: say $T=3$, write down this restriction for $\ell \geq d, d=1,2,3$.
- HW4: under monotone nonresponse, the AC assumption is equivalent to MAR

The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases where ℓ is available:

$$
p_{A C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D>\ell\right)
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Among all observations with $D>\ell$ we get to observe z_{ℓ} and $z_{(\ell)}$
- We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_{ℓ}
- HW4: say $T=3$, write down this restriction for $\ell \geq d, d=1,2,3$.
- HW4: under monotone nonresponse, the AC assumption is equivalent to MAR

The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases where ℓ is available:

$$
p_{A C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D>\ell\right)
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Among all observations with $D>\ell$ we get to observe z_{ℓ} and $z_{(\ell)}$
- We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_{ℓ}
- HW4: say $T=3$, write down this restriction for $\ell \geq d, d=1,2,3$.
- HW4: under monotone nonresponse, the AC assumption is equivalent to MAR

The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases where ℓ is available:

$$
p_{A C}\left(z_{\ell} \mid z_{(\ell)}, D=d\right) \equiv p\left(z_{\ell} \mid z_{(\ell)}, D>\ell\right),
$$

for all $\ell \geq d, d=1, \ldots, T$.

- Among all observations with $D>\ell$ we get to observe z_{ℓ} and $z_{(\ell)}$
- We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_{ℓ}
- HW4: say $T=3$, write down this restriction for $\ell \geq d, d=1,2,3$.
- HW4: under monotone nonresponse, the AC assumption is equivalent to MAR

Outline

Recap from Previous Lecture
 Common Identifying Assumptions for Pattern-Mixture Models

Itemwise Conditionally Independent Nonresponse

Properties of Classes of Full-Data Distributions

Sensitivity Analysis

Itemwise Conditionally Independent Nonresponse

- Identification assumptions can also be expressed as restrictions on the full-data distribution
- The itemwise conditionally independent nonresponse (ICIN) ${ }^{1}$ assumption says that

$$
\begin{gathered}
Z_{j} \Perp R_{j} \mid Z_{-j}, R_{-j}, \quad \text { for all } j=1, \ldots, K \\
\text { where } Z_{-j}=\left(\ldots, Z_{j-1}, Z_{j+1}, \ldots\right), R_{-j}=\left(\ldots, R_{j-1}, R_{j+1}, \ldots\right)
\end{gathered}
$$

- Remark: Z_{j} and R_{j} being conditionally independent does not imply marginal independence

Itemwise Conditionally Independent Nonresponse

- Identification assumptions can also be expressed as restrictions on the full-data distribution
- The itemwise conditionally independent nonresponse (ICIN) ${ }^{1}$ assumption says that

$$
\begin{gathered}
Z_{j} \Perp R_{j} \mid Z_{-j}, R_{-j}, \quad \text { for all } j=1, \ldots, K \\
\text { where } Z_{-j}=\left(\ldots, Z_{j-1}, Z_{j+1}, \ldots\right), R_{-j}=\left(\ldots, R_{j-1}, R_{j+1}, \ldots\right)
\end{gathered}
$$

- Remark: Z_{j} and R_{j} being conditionally independent does not imply marginal independence

ICIN Distribution

- Sadinle \& Reiter showed how to construct a full-data distribution that encodes ICIN given an observed-data distribution
- For each missingness pattern $r \in\{0,1\}^{K}$, given $p\left(z_{(r)}, r\right)>0$, let the function $\eta_{r}: \mathcal{Z}_{(r)} \mapsto \mathbb{R}$ be defined recursively as

$$
\eta_{r}\left(z_{(r)}\right)=\log p\left(z_{(r)}, r\right)-\log \int_{\mathcal{Z}_{(\bar{r})}} \exp \left\{\sum_{\bar{r}^{\prime} \prec \bar{r}} \eta_{r^{\prime}}\left(z_{\left(r^{\prime}\right)}\right)\right\} \mu\left(d z_{(\bar{r})}\right)
$$

Then

$$
\begin{aligned}
p_{I C I N}(z, r) & =\exp \left\{\sum_{\bar{r}^{\prime} \preceq \bar{r}} \eta_{r^{\prime}}\left(z_{\left(r^{\prime}\right)}\right)\right\} \\
& =p\left(z_{(r)}, r\right) \frac{\exp \left\{\sum_{\bar{r}^{\prime} \prec \bar{r}} \eta_{r^{\prime}}\left(z_{\left(r^{\prime}\right)}\right)\right\}}{\int_{\mathcal{Z}_{(\bar{r})}} \exp \left\{\sum_{\bar{r}^{\prime} \prec \bar{r}} \eta_{r^{\prime}}\left(z_{\left(r^{\prime}\right)}\right)\right\} \mu\left(d z_{(\bar{r})}\right)}
\end{aligned}
$$

- Therefore ICIN can be seen as a restriction for pattern-mixture models!

ICIN Distribution

- Sadinle \& Reiter showed how to construct a full-data distribution that encodes ICIN given an observed-data distribution
- For each missingness pattern $r \in\{0,1\}^{K}$, given $p\left(z_{(r)}, r\right)>0$, let the function $\eta_{r}: \mathcal{Z}_{(r)} \mapsto \mathbb{R}$ be defined recursively as

$$
\eta_{r}\left(z_{(r)}\right)=\log p\left(z_{(r)}, r\right)-\log \int_{\mathcal{Z}_{(\bar{r})}} \exp \left\{\sum_{\bar{r}^{\prime}\langle\bar{r}} \eta_{r^{\prime}}\left(z_{\left(r^{\prime}\right)}\right)\right\} \mu\left(d z_{(\bar{r})}\right)
$$

Then

$$
\begin{aligned}
p_{I C I N}(z, r) & =\exp \left\{\sum_{\bar{r}^{\prime} \preceq \bar{r}} \eta_{r^{\prime}}\left(z_{\left(r^{\prime}\right)}\right)\right\} \\
& =p\left(z_{(r)}, r\right) \frac{\exp \left\{\sum_{\bar{r}^{\prime} \prec \bar{r}} \eta_{r^{\prime}}\left(z_{\left(r^{\prime}\right)}\right)\right\}}{\int_{\mathcal{Z}_{(\bar{r})}} \exp \left\{\sum_{\bar{r}^{\prime} \prec \bar{r}} \eta_{r^{\prime}}\left(z_{\left(r^{\prime}\right)}\right)\right\} \mu\left(d z_{(\bar{r})}\right)}
\end{aligned}
$$

- Therefore ICIN can be seen as a restriction for pattern-mixture models!

Outline

Recap from Previous Lecture
 Common Identifying Assumptions for Pattern-Mixture Models
 Itemwise Conditionally Independent Nonresponse

Properties of Classes of Full-Data Distributions

Sensitivity Analysis

Properties of Full-Data Distributions

- Assumptions covered so far: MCAR, MAR, CC, NC, AC, ICIN
- Can we talk about properties of the implied classes of full-data distributions? ${ }^{2}$
- Observational equivalence
- Full-data identifiability
- (Observed-data) identifiability
- Nonparametric identifiability

[^0]
Observational Equivalence

- Two full-data distributions are said to be observationally equivalent if their implied observed-data distributions are the same
- This is, say I have two full-data distributions:

$$
p_{A}\left(z_{(F)}, z_{(r)}, r\right) \quad \text { and } \quad p_{B}\left(z_{(F)}, z_{(r)}, r\right) \text {. }
$$

If

$$
\int p_{A}\left(z_{(\bar{r})}, z_{(r)}, r\right) d z_{(\bar{r})}=\int p_{B}\left(z_{(\bar{r})}, z_{(r)}, r\right) d z_{(\bar{r})}
$$

for all $\left(z_{(r)}, r\right)$, then they are observationally equivalent

- HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are observationally equivalent (under dropout)
- This is an important feature in sensitivity analysis, because differences in inferences will be due to the different identifying assumptions and not due to different fits to the observed data!

Observational Equivalence

- Two full-data distributions are said to be observationally equivalent if their implied observed-data distributions are the same
- This is, say I have two full-data distributions:

$$
\begin{aligned}
& \qquad p_{A}\left(z_{(\bar{r})}, z_{(r)}, r\right) \text { and } p_{B}\left(z_{(\bar{r})}, z_{(r)}, r\right) . \\
& \text { If } \int p_{A}\left(z_{(\bar{r})}, z_{(r)}, r\right) d z_{(\bar{r})}=\int p_{B}\left(z_{(\bar{r})}, z_{(r)}, r\right) d z_{(\bar{r})} \\
& \text { for all }\left(z_{(r)}, r\right) \text {, then they are observationally equivalent } \\
& \text { HW4: the full-data distributions obtained under the CC, NC, and } \\
& \text { AC assumptions are observationally equivalent (under dropout) } \\
& \text { This is an important feature in sensitivity analysis, because } \\
& \text { differences in inferences will be due to the different identifying } \\
& \text { assumptions and not due to different fits to the observed data! }
\end{aligned}
$$

Observational Equivalence

- Two full-data distributions are said to be observationally equivalent if their implied observed-data distributions are the same
- This is, say I have two full-data distributions:

$$
p_{A}\left(z_{(\bar{r})}, z_{(r)}, r\right) \quad \text { and } \quad p_{B}\left(z_{(\bar{r})}, z_{(r)}, r\right)
$$

If

$$
\int p_{A}\left(z_{(\bar{r})}, z_{(r)}, r\right) d z_{(\bar{r})}=\int p_{B}\left(z_{(\bar{r})}, z_{(r)}, r\right) d z_{(\bar{r})}
$$

for all $\left(z_{(r)}, r\right)$, then they are observationally equivalent

- HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are observationally equivalent (under dropout)
- This is an important feature in sensitivity analysis, because differences in inferences will be due to the different identifying assumptions and not due to different fits to the observed data!

Observational Equivalence

- Two full-data distributions are said to be observationally equivalent if their implied observed-data distributions are the same
- This is, say I have two full-data distributions:

$$
p_{A}\left(z_{(\bar{r})}, z_{(r)}, r\right) \quad \text { and } \quad p_{B}\left(z_{(\bar{r})}, z_{(r)}, r\right)
$$

If

$$
\int p_{A}\left(z_{(\bar{r})}, z_{(r)}, r\right) d z_{(\bar{r})}=\int p_{B}\left(z_{(\vec{r})}, z_{(r)}, r\right) d z_{(\bar{r})}
$$

for all $\left(z_{(r)}, r\right)$, then they are observationally equivalent

- HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are observationally equivalent (under dropout)
- This is an important feature in sensitivity analysis, because differences in inferences will be due to the different identifying assumptions and not due to different fits to the observed data!

Observational Equivalence

- Two full-data distributions are said to be observationally equivalent if their implied observed-data distributions are the same
- This is, say I have two full-data distributions:

$$
p_{A}\left(z_{(\bar{r})}, z_{(r)}, r\right) \quad \text { and } \quad p_{B}\left(z_{(\bar{r})}, z_{(r)}, r\right)
$$

If

$$
\int p_{A}\left(z_{(\vec{r})}, z_{(r)}, r\right) d z_{(\bar{r})}=\int p_{B}\left(z_{(\bar{r})}, z_{(r)}, r\right) d z_{(\bar{r})}
$$

for all $\left(z_{(r)}, r\right)$, then they are observationally equivalent

- HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are observationally equivalent (under dropout)
- This is an important feature in sensitivity analysis, because differences in inferences will be due to the different identifying assumptions and not due to different fits to the observed data!

Observational Equivalence

- Two full-data distributions are said to be observationally equivalent if their implied observed-data distributions are the same
- This is, say I have two full-data distributions:

$$
p_{A}\left(z_{(\bar{r})}, z_{(r)}, r\right) \quad \text { and } \quad p_{B}\left(z_{(\bar{r})}, z_{(r)}, r\right)
$$

If

$$
\int p_{A}\left(z_{(\vec{r})}, z_{(r)}, r\right) d z_{(\bar{r})}=\int p_{B}\left(z_{(\bar{r})}, z_{(r)}, r\right) d z_{(\bar{r})}
$$

for all $\left(z_{(r)}, r\right)$, then they are observationally equivalent

- HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are observationally equivalent (under dropout)
- This is an important feature in sensitivity analysis, because differences in inferences will be due to the different identifying assumptions and not due to different fits to the observed data!

Full-Data Identifiability

- \mathcal{C}_{Θ} : class of full-data distributions
- Θ : parameter space, either finite- or infinite-dimensional
- Say we were able to observe Z regardless of the value of R
- Identifiability of \mathcal{C}_{Θ} in the usual sense (e.g., Lehmann \& Casella 1998, p. 24) here is referred to as full-data identifiability
- A class of full-data distributions \mathcal{C}_{Θ} is said to be full-data identifiable if there exists a bijection from Θ to \mathcal{C}_{Θ}
- Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

Full-Data Identifiability

- \mathcal{C}_{Θ} : class of full-data distributions
- Θ : parameter space, either finite- or infinite-dimensional
- Say we were able to observe Z regardless of the value of R
- Identifiability of \mathcal{C}_{Θ} in the usual sense (e.g., Lehmann \& Casella 1998, p. 24) here is referred to as full-data identifiability
- A class of full-data distributions \mathcal{C}_{\ominus} is said to be full-data identifiable if there exists a bijection from Θ to \mathcal{C}_{Θ}
- Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

Full-Data Identifiability

- \mathcal{C}_{Θ} : class of full-data distributions
- Θ : parameter space, either finite- or infinite-dimensional
- Say we were able to observe Z regardless of the value of R
- Identifiability of \mathcal{C}_{\ominus} in the usual sense (e.g., Lehmann \& Casella 1998, p. 24) here is referred to as full-data identifiability
- A class of full-data distributions \mathcal{C}_{\ominus} is said to be full-data identifiable if there exists a bijection from Θ to \mathcal{C}_{\ominus}
- Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

Full-Data Identifiability

- \mathcal{C}_{Θ} : class of full-data distributions
- Θ : parameter space, either finite- or infinite-dimensional
- Say we were able to observe Z regardless of the value of R
- Identifiability of \mathcal{C}_{Θ} in the usual sense (e.g., Lehmann \& Casella 1998, p. 24) here is referred to as full-data identifiability
- A class of full-data distributions \mathcal{C}_{\ominus} is said to be full-data identifiable if there exists a bijection from Θ to \mathcal{C}_{Θ}
- Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

Full-Data Identifiability

- \mathcal{C}_{Θ} : class of full-data distributions
- Θ : parameter space, either finite- or infinite-dimensional
- Say we were able to observe Z regardless of the value of R
- Identifiability of \mathcal{C}_{Θ} in the usual sense (e.g., Lehmann \& Casella 1998, p. 24) here is referred to as full-data identifiability
- A class of full-data distributions \mathcal{C}_{Θ} is said to be full-data identifiable if there exists a bijection from Θ to \mathcal{C}_{Θ}
- Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

Full-Data Identifiability

- \mathcal{C}_{Θ} : class of full-data distributions
- Θ : parameter space, either finite- or infinite-dimensional
- Say we were able to observe Z regardless of the value of R
- Identifiability of \mathcal{C}_{Θ} in the usual sense (e.g., Lehmann \& Casella 1998, p. 24) here is referred to as full-data identifiability
- A class of full-data distributions \mathcal{C}_{Θ} is said to be full-data identifiable if there exists a bijection from Θ to \mathcal{C}_{Θ}
- Full-data identifiability is an elementary requirement which simply says that the class is properly parameterized

(Observed-Data) Identifiability

- obs $\left(\mathcal{C}_{\Theta}\right)$: the class of observed-data distributions implied by \mathcal{C}_{Θ}
- A class of full-data distributions \mathcal{C}_{\ominus} is said to be identifiable if there exist bijections from Θ to \mathcal{C}_{Θ} and from $\operatorname{obs}\left(\mathcal{C}_{\Theta}\right)$ to \mathcal{C}_{Θ}
- First bijection: full-data identifiability for \mathcal{C}_{Θ}
- Second bijection: we need a unique way to go back and forth from obs $\left(C_{\ominus}\right)$ to \mathcal{C}_{\ominus}
- These imply a third bijection between obs $\left(\mathcal{C}_{\Theta}\right)$ and Θ : the common notion of identifiability applied to obs $\left(\mathcal{C}_{\Theta}\right)$

(Observed-Data) Identifiability

- obs $\left(\mathcal{C}_{\Theta}\right)$: the class of observed-data distributions implied by \mathcal{C}_{Θ}
- A class of full-data distributions \mathcal{C}_{Θ} is said to be identifiable if there exist bijections from Θ to \mathcal{C}_{Θ} and from obs $\left(\mathcal{C}_{\Theta}\right)$ to \mathcal{C}_{Θ}
- First bijection: full-data identifiability for \mathcal{C}_{Θ}
- Second bijection: we need a unique way to go back and forth from obs $\left(C_{\ominus}\right)$ to \mathcal{C}_{\ominus}
- These imply a third bijection between obs $\left(\mathcal{C}_{\Theta}\right)$ and Θ : the common notion of identifiability applied to obs $\left(\mathcal{C}_{\Theta}\right)$

(Observed-Data) Identifiability

- obs $\left(\mathcal{C}_{\Theta}\right)$: the class of observed-data distributions implied by \mathcal{C}_{Θ}
- A class of full-data distributions \mathcal{C}_{Θ} is said to be identifiable if there exist bijections from Θ to \mathcal{C}_{Θ} and from obs $\left(\mathcal{C}_{\Theta}\right)$ to \mathcal{C}_{Θ}
- First bijection: full-data identifiability for \mathcal{C}_{\ominus}
- Second bijection: we need a unique way to go back and forth from obs $\left(\mathcal{C}_{\ominus}\right)$ to \mathcal{C}_{\ominus}
- These imply a third bijection between obs $\left(\mathcal{C}_{\Theta}\right)$ and Θ : the common notion of identifiability applied to $\operatorname{obs}\left(\mathcal{C}_{\Theta}\right)$

(Observed-Data) Identifiability

- obs $\left(\mathcal{C}_{\Theta}\right)$: the class of observed-data distributions implied by \mathcal{C}_{Θ}
- A class of full-data distributions \mathcal{C}_{Θ} is said to be identifiable if there exist bijections from Θ to \mathcal{C}_{Θ} and from obs $\left(\mathcal{C}_{\Theta}\right)$ to \mathcal{C}_{Θ}
- First bijection: full-data identifiability for \mathcal{C}_{\ominus}
- Second bijection: we need a unique way to go back and forth from obs $\left(\mathcal{C}_{\Theta}\right)$ to \mathcal{C}_{\ominus}
- These imply a third bijection between obs $\left(\mathcal{C}_{\ominus}\right)$ and Θ : the common notion of identifiability applied to obs $\left(\mathcal{C}_{\Theta}\right)$

(Observed-Data) Identifiability

- obs $\left(\mathcal{C}_{\Theta}\right)$: the class of observed-data distributions implied by \mathcal{C}_{Θ}
- A class of full-data distributions \mathcal{C}_{Θ} is said to be identifiable if there exist bijections from Θ to \mathcal{C}_{Θ} and from obs $\left(\mathcal{C}_{\Theta}\right)$ to \mathcal{C}_{Θ}
- First bijection: full-data identifiability for \mathcal{C}_{\ominus}
- Second bijection: we need a unique way to go back and forth from obs $\left(\mathcal{C}_{\Theta}\right)$ to \mathcal{C}_{\ominus}
- These imply a third bijection between obs $\left(\mathcal{C}_{\Theta}\right)$ and Θ : the common notion of identifiability applied to obs $\left(\mathcal{C}_{\ominus}\right)$

Nonparametric Identifiability

- \mathcal{G} : all possible observed-data distributions
- Say obs $\left(\mathcal{C}_{\Theta}\right)$ is a proper subset of $\mathcal{G}: \mathcal{C}_{\Theta}$ imposes parametric restrictions on what could be nonparametrically recovered from observed data alone
- \mathcal{C}_{Θ} is said to be nonparametrically identifiable if it is identifiable and $\operatorname{obs}\left(\mathcal{C}_{\Theta}\right)=\mathcal{G}$
- Also known as nonparametric saturation or just-identification (Robins 1997, Vansteelandt et al. 2006, Hoonhout \& Ridder 2018)
- Bijection between Θ and $\operatorname{obs}\left(\mathcal{C}_{\Theta}\right)=\mathcal{G}$: we can think of a nonparametrically identifiable class as being indexed by the set of all observed-data distributions \mathcal{G}

Nonparametric Identifiability

- \mathcal{G} : all possible observed-data distributions
- Say obs $\left(\mathcal{C}_{\Theta}\right)$ is a proper subset of $\mathcal{G}: \mathcal{C}_{\ominus}$ imposes parametric restrictions on what could be nonparametrically recovered from observed data alone
- \mathcal{C}_{Θ} is said to be nonparametrically identifiable if it is identifiable and $\operatorname{obs}\left(\mathcal{C}_{\ominus}\right)=\mathcal{G}$
- Also known as nonparametric saturation or just-identification (Robins 1997, Vansteelandt et al. 2006, Hoonhout \& Ridder 2018)
- Bijection between θ and obs $\left(C_{\ominus}\right)=G$: we can think of a nonparametrically identifiable class as being indexed by the set of all observed-data distributions \mathcal{G}

Nonparametric Identifiability

- \mathcal{G} : all possible observed-data distributions
- Say obs $\left(\mathcal{C}_{\Theta}\right)$ is a proper subset of $\mathcal{G}: \mathcal{C}_{\Theta}$ imposes parametric restrictions on what could be nonparametrically recovered from observed data alone
- \mathcal{C}_{Θ} is said to be nonparametrically identifiable if it is identifiable and $\operatorname{obs}\left(\mathcal{C}_{\Theta}\right)=\mathcal{G}$
- Also known as nonparametric saturation or just-identification (Robins 1997, Vansteelandt et al. 2006, Hoonhout \& Ridder 2018)
- Bijection between Θ and obs $\left(C_{\ominus}\right)=\mathcal{G}$: we can think of a nonparametrically identifiable class as being indexed by the set of all observed-data distributions \mathcal{G}

Nonparametric Identifiability

- \mathcal{G} : all possible observed-data distributions
- Say obs $\left(\mathcal{C}_{\Theta}\right)$ is a proper subset of $\mathcal{G}: \mathcal{C}_{\Theta}$ imposes parametric restrictions on what could be nonparametrically recovered from observed data alone
- \mathcal{C}_{Θ} is said to be nonparametrically identifiable if it is identifiable and $\operatorname{obs}\left(\mathcal{C}_{\Theta}\right)=\mathcal{G}$
- Also known as nonparametric saturation or just-identification (Robins 1997, Vansteelandt et al. 2006, Hoonhout \& Ridder 2018)
- Bijection between Θ and obs $\left(\mathcal{C}_{\ominus}\right)=\mathcal{G}$: we can think of a nonparametrically identifiable class as being indexed by the set of all observed-data distributions \mathcal{G}

Nonparametric Identifiability

- \mathcal{G} : all possible observed-data distributions
- Say obs $\left(\mathcal{C}_{\Theta}\right)$ is a proper subset of $\mathcal{G}: \mathcal{C}_{\Theta}$ imposes parametric restrictions on what could be nonparametrically recovered from observed data alone
- \mathcal{C}_{Θ} is said to be nonparametrically identifiable if it is identifiable and obs $\left(\mathcal{C}_{\Theta}\right)=\mathcal{G}$
- Also known as nonparametric saturation or just-identification (Robins 1997, Vansteelandt et al. 2006, Hoonhout \& Ridder 2018)
- Bijection between Θ and $\operatorname{obs}\left(\mathcal{C}_{\Theta}\right)=\mathcal{G}$: we can think of a nonparametrically identifiable class as being indexed by the set of all observed-data distributions \mathcal{G}

Nonparametric Identifiability

- Two nonparametrically identifiable classes are necessarily observationally equivalent
- Nonparametric identification additionally guarantees that these restrictions do not constrain the observed-data distribution, and therefore cannot be rejected based on the observed data
- Nonparametric identification is therefore a basic desirable property, particularly useful for comparing inferences under different missing data assumptions
- HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are nonparametric identified
- Fun fact: MAR and ICIN lead to nonparametric identification

Nonparametric Identifiability

- Two nonparametrically identifiable classes are necessarily observationally equivalent
- Nonparametric identification additionally guarantees that these restrictions do not constrain the observed-data distribution, and therefore cannot be rejected based on the observed data
- Nonparametric identification is therefore a basic desirable property, particularly useful for comparing inferences under different missing data assumptions
- HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are nonparametric identified
- Fun fact: MAR and ICIN lead to nonparametric identification

Nonparametric Identifiability

- Two nonparametrically identifiable classes are necessarily observationally equivalent
- Nonparametric identification additionally guarantees that these restrictions do not constrain the observed-data distribution, and therefore cannot be rejected based on the observed data
- Nonparametric identification is therefore a basic desirable property, particularly useful for comparing inferences under different missing data assumptions
- HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are nonparametric identified
- Fun fact: MAR and ICIN lead to nonparametric identification

Nonparametric Identifiability

- Two nonparametrically identifiable classes are necessarily observationally equivalent
- Nonparametric identification additionally guarantees that these restrictions do not constrain the observed-data distribution, and therefore cannot be rejected based on the observed data
- Nonparametric identification is therefore a basic desirable property, particularly useful for comparing inferences under different missing data assumptions
- HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are nonparametric identified
- Fun fact: MAR and ICIN lead to nonparametric identification

Nonparametric Identifiability

- Two nonparametrically identifiable classes are necessarily observationally equivalent
- Nonparametric identification additionally guarantees that these restrictions do not constrain the observed-data distribution, and therefore cannot be rejected based on the observed data
- Nonparametric identification is therefore a basic desirable property, particularly useful for comparing inferences under different missing data assumptions
- HW4: the full-data distributions obtained under the CC, NC, and AC assumptions are nonparametric identified
- Fun fact: MAR and ICIN lead to nonparametric identification

Nonparametric Identifiability

If $p_{A}\left(z_{(r)}, r\right)=p\left(z_{(r)}, r\right)$, then A leads to nonparametric identification:

- A does not impose restrictions on observed-data distribution

Nonparametric Identifiability

If $p_{A}\left(z_{(r)}, r\right)=p\left(z_{(r)}, r\right)$, then A leads to nonparametric identification:

- A does not impose restrictions on observed-data distribution
- A cannot be rejected from observed data alone

Outline

Recap from Previous Lecture
Common Identifying Assumptions for Pattern-Mixture Models
Itemwise Conditionally Independent Nonresponse
Properties of Classes of Full-Data Distributions

Sensitivity Analysis

Sensitivity Analysis

Based on Scharfstein et al. (Biometrics 2018) ${ }^{3}$:

- Local sensitivity analysis
- Make a missing-data assumption A, explore changes in inferences implied by departures from A in a "neighborhood" around A
- See Chapter 7 of the lecture notes of Davidian and Tsiatisfor more on this
- Global sensitivity analysis
- Make completely different missing-data assumptions, explore inferences under all such assumptions
- We will illustrate global sensitivity analysis with an example presented by Sadinle \& Reiter (2017)

The Slovenian Plebiscite Data Revisited

- Slovenians voted for independence from Yugoslavia in a plebiscite in 1991
- The Slovenian public opinion survey included these questions:

1. Independence: Are you in favor of Slovenian independence?
2. Secession: Are you in favor of Slovenia's secession from Yugoslavia?
3. Attendance: Will you attend the plebiscite?

- Rubin, Stern and Vehovar (1995) analyzed these three questions under MAR
- Plebiscite results give us the proportions of non-attendants and attendants in favor of independence

The Slovenian Plebiscite Data Revisited

- Slovenians voted for independence from Yugoslavia in a plebiscite in 1991
- The Slovenian public opinion survey included these questions:

1. Independence: Are you in favor of Slovenian independence?
2. Secession: Are you in favor of Slovenia's secession from Yugoslavia?
3. Attendance: Will you attend the plebiscite?

- Rubin, Stern and Vehovar (1995) analyzed these three questions under MAR
- Plebiscite results give us the proportions of non-attendants and attendants in favor of independence

The Slovenian Plebiscite Data Revisited

Table 1. SPO Survey Results ($n=2,074$)

		Independence		
				Don't
Secession	Attendance	Yes	No	know
Yes	Yes	1,191	8	21
	No	8	0	4
	Non't Know	107	3	9
	Yes	158	68	29
	No	7	14	3
Don't Know	Don't Know	18	43	31
	Yes	No	90	2

Taken from Rubin, Stern and Vehovar (JASA, 1995)

Slovenian Data: a Bayesian Approach

- Let $\pi_{z_{(r)}, r}=p\left(z_{(r)}, r\right), \quad \pi=\left\{\pi_{z_{(r)}, r}\right\}$
- Draw $\pi^{(i)}$ from posterior of π given the Slovenian data (problems 9 and 10 of HW3)
- Do, for $i=1, \ldots, m$:

Slovenian Data: a Bayesian Approach

- Let $\pi_{z_{(r)}, r}=p\left(z_{(r)}, r\right), \quad \pi=\left\{\pi_{z_{(r)}, r}\right\}$
- Draw $\pi^{(i)}$ from posterior of π given the Slovenian data (problems 9 and 10 of HW3)
- Do, for $i=1, \ldots, m$:

$p_{A}^{(1)}$ (Independence $=$ Yes, Attendance $\left.=\mathrm{Yes}\right)$,

Slovenian Data: a Bayesian Approach

- Let $\pi_{z_{(r)}, r}=p\left(z_{(r)}, r\right), \quad \pi=\left\{\pi_{z_{(r)}, r}\right\}$
- Draw $\pi^{(i)}$ from posterior of π given the Slovenian data (problems 9 and 10 of HW3)
- Do, for $i=1, \ldots, m$:

$p_{A}^{(i)}($ Independence $=$ Yes, Attendance $=$ Yes $), \quad p_{A}^{(i)}($ Attendance $=$ No $)$

Global Sensitivity Analysis for The Slovenian Data

Pattern-Mixture CC

Figure: Samples from joint posterior distributions of p (Independence $=$ Yes, Attendance $=\mathrm{Yes}$) and $\mathrm{p}($ Attendance $=\mathrm{No})$. Red diamond: results of plebiscite.

- All of these identifying assumptions lead to nonparametric identifiability!

Global Sensitivity Analysis for The Slovenian Data

Figure: Samples from joint posterior distributions of p (Independence $=$ Yes, Attendance $=\mathrm{Yes})$ and $\mathrm{p}($ Attendance $=$ No). Red diamond: results of plebiscite.

- All of these identifying assumptions lead to nonparametric identifiability!

Summary

Main take-aways from today's lecture:

- Pattern-mixture models provide an alternative way of thinking about missing data
- Ensuring identifiability is key when moving away from MAR
- Nonparametric identifiability is an important and desirable property
- Sensitivity analyses are recommended

Summary

Main take-aways from this class:

- The fundamental problem of inference with missing data: it is impossible without extra, usually untestable, assumptions on how missingness arises
- Willing to assume MAR?: plethora of approaches readily available:
- Frequentist likelihood-based inference (EM algorithm)
- Bayesian inference (Data Augmentation / Gibbs samplers)
- Multiple imputation (although worry about uncongeniality)
- Inverse-probability weighting (also, double robust procedures)
(they also could handle nonignorable missingness - current area of research)
- Avoid ad-hoc approaches such as single imputation and complete-case analysis

Thank you for your patience and participation!

THE END

[^0]: ${ }^{2}$ Taken from Sadinle \& Reiter (forthcoming in Biometrika): https://arxiv.org/pdf/1902.06043.pdf

