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So Far

The approaches that we have covered for handling missing data:
» Ad-hoc approaches (imputation, complete cases)

» Frequentist likelihood-based inference

v

Bayesian inference

v

Multiple imputation

v

Inverse-probability weighting

Something they have in common:

» We have assumed MAR (or MCAR), sometimes avoiding to handle
the response mechanism p(r | z)



Today's Lecture

» What if we want to move away from MAR?
» We will talk about some fundamental issues for handling missing
data
> |dentifiability
> Nonignorability
» This discussion naturally leads to pattern-mixture models
» Reading: Chapter 6 of the lecture notes of Davidian and Tsiatis



Back to the Basics: Lecture 1

> Y: study variable

» R: response indicator

ply) =ply[R=0)p(R=0)+p(y | R=1)p(R=1)
S~~~ ——

what we want what we can get

We cannot recover p(y | R = 0) nor p(y) from observed data alone

The fundamental problem of inference with missing data: it is impossible
without extra, usually untestable, assumptions on how missingness arises



Sample Data

» The full-data sample are independent and identically distributed
(i.i.d.) draws from some distribution F

Z,' Ri n I/I\JdF
’ i=1

> R; determines the part of Z; that we get to observe: Zjgr)
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Sample Data

» The full-data sample are independent and identically distributed
(i.i.d.) draws from some distribution F
n o idd.
{(Zi, Ri)}iea "~ F

> R; determines the part of Z; that we get to observe: Zjgr)

» We can think of the generative process, for each i:

i = R = (Zi(R,-)7Ri)

» In this lecture, we delete the subindex i to talk about
> A generic draw from F
» What we could recover provided an infinite sample size

> Separate identifiability issues from estimation issues

™



Types of Data

> Full data: (Z,R)
> Observed data:  (Z(r), R)

> Missing data: Z(R)

Relationship:

(Za R) = (Z(ﬁ)v Z(R); R)

6

24
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Distributions of Interest
» Full-data distribution: joint distribution of (Z, R) with density

p(z,r) = p(z(;),z(,), r), forall r

> Observed-data distribution: joint distribution of (Zgy, R) with
density

p(z(r), 1) = /p(Z(F)vz(r)yr) dz), for all r

» Missing-data distribution, or extrapolation distribution: conditional
distribution of Zz) given (Z(r), R)

P(Z(r) | Z(r), r)= w7 for all r

p(z(ry; r)
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The Full-Data Distribution

» Joint distribution of (Z, R) with density
p(z,r)

» Quantities of interest  (parameters) depend on the full-data
distribution

p(zr) — p2) =S plzr) — 0=E[(2)] = / F(2)p(2)dz

p
> For example, say f(Z) = Zj, then

0= E2) = [ 2p(z)ds = [ zp(a)dz



The Observed-Data Distribution

> Given R = r, we observe Z(
» We can estimate p(z;,) | R = r) and p(R = r) from observed data

» The observed-data distribution is all we can hope to recover from
data alone

P(z(r), r) = p(z(ry | r)p(r)
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The Observed-Data Distribution

> Given R = r, we observe Z(
» We can estimate p(z;,) | R = r) and p(R = r) from observed data

» The observed-data distribution is all we can hope to recover from
data alone

P(z(r), r) = p(z(ry | r)p(r)

> For example, say you can sample indefinitely from the joint
distribution of
Z = (Z,25) and R = (R, R»)

> If R; = 0 you don't see the value of Z;

» What we can estimate from such data:
> p(R=r),re {0,1)2
> p(z | R = 10)

> p(z2 | R =01)



The Observed-Data Distribution

> Given R = r, we observe Z(
» We can estimate p(z;,) | R = r) and p(R = r) from observed data

» The observed-data distribution is all we can hope to recover from
data alone

P(z(r),r) = p(zry | r)p(r)
> For example, say you can sample indefinitely from the joint
distribution of
Z = (Z,25) and R = (R, R»)

> If R; = 0 you don't see the value of Z;

» What we can estimate from such data:
> p(R=r),re{0,1}?

v

p(z1 | R = 10)

v

p(z2 | R=101)

v

p(z1,z2 | R=11)
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The Extrapolation Distribution

v

Given R = r, we observe Z(,), but we don't observe Z(;)

v

There is no way of estimating p(z) | ), r) without assumptions

how to extrapolate

—_—~
P(z7), 2 r) = P(Z@w) | 2 r) P(2Z(r)5 1)
——— ——
what we want what we can get

v

We say that p(zg) | z(, r), and therefore p(z,r), are not identifiable

v

Identifying assumptions explicitly or implicitly amount to
constructing p(z) | zr), r) from p(z, r)



General Identification Strategy

[ p(Z(,), r) }

Identifying assumption A

e

Sum over r

e
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[ p(Z(,), r) }

Identifying assumption A

e

Sum over r
N

» Note that MAR (ignorability) gives you a shortcut to go from
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General Identification Strategy

{ p(Z(,), r) }

Identifying assumption A

e

Sum over r
T

» Note that MAR (ignorability) gives you a shortcut to go from
P(z(r), r) to pmar(2)

» Otherwise, how do people specify identifying assumptions?

11/24
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Factorizations of the Full-Data Distribution
Selection model factorization:

p(z,r) = p(r | z)p(z)
» The response mechanism p(r | z) represents the way in which values
of study variables get selected into the sample

» Natural factorization when we initially had a model {p(z | 8)}¢ in
mind, say had we not had missing data

» Allows us to continue using model {p(z | 8)}¢

> Identifying assumptions are expressed as restriction on response
mechanism p(r | z)

» We have focused on this approach so far under MAR:

p(r|z) =p(r|zmn)



Factorizations of the Full-Data Distribution

Pattern-mixture model factorization:

p(z,r)=p(z | r)p(r)

> Requires models for distribution of Z given each value R =r
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Factorizations of the Full-Data Distribution

Pattern-mixture model factorization:

p(z,r)=p(z | r)p(r)

> Requires models for distribution of Z given each value R =r

» Distribution of study variables is obtained as a mixture of
pattern-specific models

p(z) =Y p(z| r)p(r)

r

» This gives an alternative approach for handling missing data

13 /24



Pattern-Mixture Models

» The pattern-mixture model factorization explicitly reveals:

p(z) =3 p(z | r)p(r)
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Pattern-Mixture Models

» The pattern-mixture model factorization explicitly reveals:
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= plze) | 21y, )p(z(r) | r)p(r)

needs identifying assumption

—_—
=> " p(z# | z:1) Pz | r)p(r)
r _/_/

can be estimated from data

14 /24



Pattern-Mixture Models

» The pattern-mixture model factorization explicitly reveals:

p(z) = _p(z| r)p(r)
= plze) | 21y, )p(z(r) | r)p(r)

needs identifying assumption

—_—
=> " p(z# | z:1) Pz | r)p(r)
r %/_/

can be estimated from data

» Explicitly shows what needs identifying assumptions and what can
be obtained from data alone

14 /24



|dentifying Assumptions for Pattern-Mixture Models

> Identifying assumptions in the framework of pattern mixture models
amount to specifying how to construct

{p(z(7) | (), )}

from

{P(Z(r), r)}r
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|dentifying Assumptions for Pattern-Mixture Models

>

Identifying assumptions in the framework of pattern mixture models
amount to specifying how to construct

{p(z(7) | (), )}

from

{p(z(r), 1)}
Once pa(zy) | (), r) is specified, according to an assumption A,
this defines a full-data density

pa(Z(); 2(r), 1) = Pa(Z() | Z(r), 1)P(2(r)5 7)

Note that this in turn implies a response mechanism

PA(Z(7), Z(r), )
pa(r | 2, 2(n) = > Pa(Z(ys 2y, 1)

Assumptions that lead to response mechanisms that are not
particular cases of MAR are nonignorable

15 /24
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Comments on Pattern-Mixture Models
Advantages:

> Identifiability requirements are more explicit than with selection
models: easier to understand what is it that you are assuming

> Provides a natural framework for sensitivity analyses
Limitations:

» We cannot continue using model {p(z | 8)}¢

» Parameters of scientific interest do not explicitly appear in the model

> Requires per-pattern model, say {p(z) | r,0;)}o,

> For general pattern of nonresponse we would need 25 — 1 models,
one for each pattern in {0,1}¥ (minus Ok)

» Most developments under this approach assume monotone

nonresponse (e.g., dropout)

16
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Dropout in Longitudinal Study

If missingness comes only from subjects dropping out

> Missingness patterns are uniquely summarized by the dropout time

» The observed data are obtained as realizations of
(Z(py, D)
where, if D =d, Zig) = (Z1,...,2Z4-1) and Z g = (Z4, ..., ZT)
» Pattern-mixture model requires modeling

> p(D = d): simply take empirical frequency
> p(zq) | D = d): depends on variable type

17 /24



A Simple Pattern-Mixture Model Under Dropout

In some situations, the following simple implementation of
pattern-mixture models (PMMs) might be reasonable

> Idea: for each dropout group, model observed data and extrapolate
to missing data
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A Simple Pattern-Mixture Model Under Dropout

In some situations, the following simple implementation of
pattern-mixture models (PMMs) might be reasonable

> Idea: for each dropout group, model observed data and extrapolate

to missing data
> Example:
» For each d, fit
E(Y; | D = d) = Boa + Brat),
using data from j < d, and predict for j > d

> This implies

E(Y;) = EIE(Y; | D=d)] = p(D=d)oa+1ty_ p(D=d)b

> All parameters p(d), Bod, f1d, d =1,..., T, can be directly
estimated from the observed data (provided dropout starts at time
D =3)
» Note that this approach imposes parametric assumptions on the
evolution of means over time, and assumes that this trend can be
extrapolated
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|dentifying Assumptions for PMMs Under Dropout

» In general, how to obtain p(z(g) | z(ay, d) from p(zqy,d)?
» Note that

p(za | 24, d) = p(zds-- - z7 | 21, ..., 241, d)

-
HP z |z, 241,05 20-1,d)
,

= [Irtz =

o~
Q

o~
Q

» Thus, we need to think how to obtain p(z | zy), d) for each £ > d,

d=1,...,T
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The Complete-Case |dentifying Assumption

Little (JASA 1993) proposed to tie the extrapolation distributions to the
distribution of complete cases:
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forall{>d, d=1,...,T.
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The Neighboring-Case |dentifying Assumption

The extrapolation distributions could also be obtained from the closest
dropout pattern where £ is available:

pnc(ze | 2y, D = d) = p(z | z4), D = £+ 1),
forall ¢ >d,d=1,...,T.
» Among observations with D = £ + 1 we get to observe z; and z)

» We could think that observations with D = ¢ + 1 are the best for
basing extrapolation of the values of Z;

» HWA4: say T = 3, write down this restriction for £ > d, d = 1,2,3.
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The Available-Case ldentifying Assumption

Here, the extrapolation distributions are obtained from all available cases
where ¢ is available:

pac(ze | z@y, D = d) = p(z | z4y, D > £),
forall ¢ >d,d=1,...,T.

» Among observations with D > ¢ we get to observe z, and z)

» We could think that this approach maximizes the use of available
information for basing extrapolation of the values of Z;

» HWA4: say T = 3, write down this restriction for £ > d, d = 1,2,3.

» HW4: under monotone nonresponse, the AC assumption is
equivalent to MAR
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Observational Equivalence

» Two full-data distributions are said to be observationally equivalent
if their implied observed-data distributions are the same

» This is, say | have two full-data distributions
pa(Z(7), Z(r)> 1)
and
pa(Z(), Z(r), 1)
/PA(Z() Z(r), 1) dz() —/PB(Z() Z(r), 1) dzz)

for all (z), r), then they are observationally equivalent

» HWA4: the full-data distributions obtained under the CC, NC, and
AC restrictions are observationally equivalent

» This is an important feature in sensitivity analysis! (next class)
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» The fundamental problem of inference with missing data: it is
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missingness arises

» Pattern-mixture models provide an alternative way of thinking about
missing data

» Remember the universe of missing-data assumptions:

MNAR




Summary
Main take-aways from today’s lecture:
» The fundamental problem of inference with missing data: it is

impossible without extra, usually untestable, assumptions on how
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» Pattern-mixture models provide an alternative way of thinking about
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Next lecture:
» More on nonignorable missing data (MNAR), and sensitivity analysis



