Statistical Methods for Analysis with Missing Data

Lecture 15: identifiability, nonignorability, pattern-mixture models

Mauricio Sadinle

Department of Biostatistics

UNIVERSITY of WASHINGTON
So Far

The approaches that we have covered for handling missing data:

- Ad-hoc approaches (imputation, complete cases)
- Frequentist likelihood-based inference
- Bayesian inference
- Multiple imputation
- Inverse-probability weighting

Something they have in common:

- We have assumed MAR (or MCAR), sometimes avoiding to handle the response mechanism $p(r \mid z)$
Today’s Lecture

▶ What if we want to move away from MAR?

▶ We will talk about some fundamental issues for handling missing data
 ▶ Identifiability
 ▶ Nonignorability

▶ This discussion naturally leads to pattern-mixture models

▶ Reading: Chapter 6 of the lecture notes of Davidian and Tsiatis
Y: study variable
R: response indicator

\[p(y) = p(y \mid R = 0)p(R = 0) + p(y \mid R = 1)p(R = 1) \]

what we want what we can get

We cannot recover \(p(y \mid R = 0) \) nor \(p(y) \) from observed data alone.

The fundamental problem of inference with missing data: it is impossible without extra, usually untestable, assumptions on how missingness arises.
Sample Data

- The **full-data sample** are independent and identically distributed (i.i.d.) draws from some distribution F

$$\{(Z_i, R_i)\}_{i=1}^n \sim^\text{i.i.d.} F$$

- R_i determines the part of Z_i that we get to observe: $Z_{i(R_i)}$

- We can think of the generative process, for each i:

$$Z_i \implies R_i \implies (Z_{i(R_i)}, R_i)$$

- In this lecture, we delete the subindex i to talk about

 - A generic draw from F
 - What we could recover provided an infinite sample size
 - Separate **identifiability** issues from **estimation** issues
Sample Data

- The full-data sample are independent and identically distributed (i.i.d.) draws from some distribution F

\[\{(Z_i, R_i)\}_{i=1}^n \overset{i.i.d.}{\sim} F \]

- R_i determines the part of Z_i that we get to observe: $Z_{i(R_i)}$

- We can think of the generative process, for each i:

\[Z_i \implies R_i \implies (Z_{i(R_i)}, R_i) \]

- In this lecture, we delete the subindex i to talk about
 - A generic draw from F
 - What we could recover provided an infinite sample size
 - Separate identifiability issues from estimation issues
Sample Data

- The full-data sample are independent and identically distributed (i.i.d.) draws from some distribution F

$$\{(Z_i, R_i)\}_{i=1}^n \overset{i.i.d.}{\sim} F$$

- R_i determines the part of Z_i that we get to observe: $Z_{i(R_i)}$

- We can think of the generative process, for each i:

$$Z_i \implies R_i \implies (Z_{i(R_i)}, R_i)$$

- In this lecture, we delete the subindex i to talk about
 - A generic draw from F
 - What we could recover provided an infinite sample size
 - Separate identifiability issues from estimation issues
Types of Data

▶ Full data: \((Z, R)\)

▶ Observed data: \((Z(R), R)\)

▶ Missing data: \(Z(\bar{R})\)

Relationship:

\[
(Z, R) = (Z(\bar{R}), Z(R), R)
\]
Distributions of Interest

- Full-data distribution: joint distribution of \((Z, R)\) with density

\[p(z, r) \equiv p(z(\bar{r}), z(r), r), \text{ for all } r \]

- Observed-data distribution: joint distribution of \((Z(R), R)\) with density

\[p(z(r), r) = \int p(z(\bar{r}), z(r), r) \, dz(\bar{r}), \text{ for all } r \]

- Missing-data distribution, or extrapolation distribution: conditional distribution of \(Z(\bar{R})\) given \((Z(R), R)\)

\[p(z(\bar{r}) \mid z(r), r) = \frac{p(z(\bar{r}), z(r), r)}{p(z(r), r)}, \text{ for all } r \]
Distributions of Interest

- Full-data distribution: joint distribution of \((Z, R)\) with density
 \[p(z, r) \equiv p(z_{(\bar{r})}, z_{(r)}, r), \text{ for all } r \]

- Observed-data distribution: joint distribution of \((Z_{(R)}, R)\) with density
 \[p(z_{(r)}, r) = \int p(z_{(\bar{r})}, z_{(r)}, r) \, dz_{(\bar{r})}, \text{ for all } r \]

- Missing-data distribution, or extrapolation distribution: conditional distribution of \(Z_{(\bar{R})}\) given \((Z_{(R)}, R)\)
 \[p(z_{(\bar{r})} \mid z_{(r)}, r) = \frac{p(z_{(\bar{r})}, z_{(r)}, r)}{p(z_{(r)}, r)}, \text{ for all } r \]
Distributions of Interest

- Full-data distribution: joint distribution of \((Z, R)\) with density

\[
p(z, r) \equiv p(z(\bar{r}), z(r), r), \text{ for all } r
\]

- Observed-data distribution: joint distribution of \((Z(R), R)\) with density

\[
p(z(r), r) = \int p(z(\bar{r}), z(r), r) \, dz(\bar{r}), \text{ for all } r
\]

- Missing-data distribution, or extrapolation distribution: conditional distribution of \(Z(\bar{R})\) given \((Z(R), R)\)

\[
p(z(\bar{r}) \mid z(r), r) = \frac{p(z(\bar{r}), z(r), r)}{p(z(r), r)}, \text{ for all } r
\]
The Full-Data Distribution

- Joint distribution of \((Z, R)\) with density
 \[p(z, r) \]

- Quantities of interest \(\theta\) (parameters) depend on the full-data distribution
 \[p(z, r) \rightarrow p(z) = \sum_r p(z, r) \rightarrow \theta = E[f(Z)] = \int f(z)p(z)dz \]

- For example, say \(f(Z) = Z_j\), then
 \[\theta_j = E(Z_j) = \int z_j p(z_j)dz_j = \int z_j p(z)dz \]
The Full-Data Distribution

- Joint distribution of \((Z, R)\) with density

\[p(z, r) \]

- Quantities of interest \(\theta\) (parameters) depend on the full-data distribution

\[p(z, r) \rightarrow p(z) = \sum_r p(z, r) \rightarrow \theta = E[f(Z)] = \int f(z)p(z)dz \]

- For example, say \(f(Z) = Z_j\), then

\[\theta_j = E(Z_j) = \int z_j p(z_j)dz_j = \int z_j p(z)dz \]
The Full-Data Distribution

- Joint distribution of \((Z, R)\) with density

\[p(z, r) \]

- Quantities of interest \(\theta\) (parameters) depend on the full-data distribution

\[p(z, r) \rightarrow p(z) = \sum_r p(z, r) \rightarrow \theta = E[f(Z)] = \int f(z)p(z)dz \]

- For example, say \(f(Z) = Z_j\), then

\[\theta_j = E(Z_j) = \int z_j p(z_j)dz_j = \int z_j p(z)dz \]
The Full-Data Distribution

- Joint distribution of \((Z, R)\) with density

\[
p(z, r)
\]

- Quantities of interest \(\theta\) (parameters) depend on the full-data distribution

\[
p(z, r) \rightarrow p(z) = \sum_r p(z, r) \quad \rightarrow \quad \theta = E[f(Z)] = \int f(z)p(z)dz
\]

- For example, say \(f(Z) = Z_j\), then

\[
\theta_j = E(Z_j) = \int z_j p(z_j) dz_j = \int z_j p(z) dz
\]
The Full-Data Distribution

- Joint distribution of \((Z, R)\) with density

\[p(z, r) \]

- Quantities of interest \(\theta\) (parameters) depend on the full-data distribution

\[p(z, r) \rightarrow p(z) = \sum_r p(z, r) \rightarrow \theta = E[f(Z)] = \int f(z)p(z)dz \]

- For example, say \(f(Z) = Z_j\), then

\[\theta_j = E(Z_j) = \int z_jp(z_j)dz_j = \int z_jp(z)dz \]
The Observed-Data Distribution

- Given $R = r$, we observe $Z_{(r)}$.
- We can estimate $p(z_{(r)} \mid R = r)$ and $p(R = r)$ from observed data.
- The observed-data distribution is all we can hope to recover from data alone.

$$p(z_{(r)}, r) = p(z_{(r)} \mid r)p(r)$$

- For example, say you can sample indefinitely from the joint distribution of
 $$Z = (Z_1, Z_2) \text{ and } R = (R_1, R_2)$$
- If $R_j = 0$ you don’t see the value of Z_j.
- What we can estimate from such data:
 - $p(R = r), r \in \{0, 1\}^2$
 - $p(z_1 \mid R = 10)$
 - $p(z_2 \mid R = 01)$
 - $p(z_1, z_2 \mid R = 11)$
The Observed-Data Distribution

- Given $R = r$, we observe $Z_{(r)}$
- We can estimate $p(z_{(r)} \mid R = r)$ and $p(R = r)$ from observed data
- The observed-data distribution is all we can hope to recover from data alone

\[p(z_{(r)}, r) = p(z_{(r)} \mid r)p(r) \]

- For example, say you can sample indefinitely from the joint distribution of

\[Z = (Z_1, Z_2) \text{ and } R = (R_1, R_2) \]

- If $R_j = 0$ you don’t see the value of Z_j

- What we can estimate from such data:
 - $p(R = r), r \in \{0, 1\}^2$
 - $p(z_1 \mid R = 10)$
 - $p(z_2 \mid R = 01)$
 - $p(z_1, z_2 \mid R = 11)$
The Observed-Data Distribution

- Given $R = r$, we observe Z_r
- We can estimate $p(z_r | R = r)$ and $p(R = r)$ from observed data.
- The observed-data distribution is all we can hope to recover from data alone,
 \[p(z_r, r) = p(z_r | r)p(r) \]

 - For example, say you can sample indefinitely from the joint distribution of $Z = (Z_1, Z_2)$ and $R = (R_1, R_2)$.
 - If $R_j = 0$ you don’t see the value of Z_j.

- What we can estimate from such data:
 - $p(R = r)$, $r \in \{0, 1\}^2$
 - $p(z_1 | R = 10)$
 - $p(z_2 | R = 01)$
 - $p(z_1, z_2 | R = 11)$
The Observed-Data Distribution

▶ Given \(R = r \), we observe \(Z(r) \)

▶ We can estimate \(p(z(r) \mid R = r) \) and \(p(R = r) \) from observed data

▶ The observed-data distribution is all we can hope to recover from data alone

\[
p(z(r), r) = p(z(r) \mid r)p(r)
\]

▶ For example, say you can sample indefinitely from the joint distribution of

\[
Z = (Z_1, Z_2) \text{ and } R = (R_1, R_2)
\]

▶ If \(R_j = 0 \) you don’t see the value of \(Z_j \)

▶ What we can estimate from such data:

▶ \(p(R = r), r \in \{0, 1\}^2 \)

▶ \(p(z_1 \mid R = 10) \)

▶ \(p(z_2 \mid R = 01) \)

▶ \(p(z_1, z_2 \mid R = 11) \)
The Observed-Data Distribution

- Given $R = r$, we observe $Z(r)$
- We can estimate $p(z(r) \mid R = r)$ and $p(R = r)$ from observed data
- The observed-data distribution is all we can hope to recover from data alone

$$p(z(r), r) = p(z(r) \mid r)p(r)$$

- For example, say you can sample indefinitely from the joint distribution of
 $$Z = (Z_1, Z_2) \text{ and } R = (R_1, R_2)$$

 - If $R_j = 0$ you don’t see the value of Z_j

- What we can estimate from such data:
 - $p(R = r), r \in \{0, 1\}^2$
 - $p(z_1 \mid R = 10)$
 - $p(z_2 \mid R = 01)$
 - $p(z_1, z_2 \mid R = 11)$
The Observed-Data Distribution

- Given $R = r$, we observe $Z(r)$

- We can estimate $p(z(r) \mid R = r)$ and $p(R = r)$ from observed data

- The observed-data distribution is all we can hope to recover from data alone

 \[p(z(r), r) = p(z(r) \mid r)p(r) \]

 - For example, say you can sample indefinitely from the joint distribution of

 \[Z = (Z_1, Z_2) \text{ and } R = (R_1, R_2) \]

 - If $R_j = 0$ you don’t see the value of Z_j

- What we can estimate from such data:
 - $p(R = r), r \in \{0, 1\}^2$
 - $p(z_1 \mid R = 10)$
 - $p(z_2 \mid R = 01)$
 - $p(z_1, z_2 \mid R = 11)$
The Extrapolation Distribution

- Given $R = r$, we observe $Z(r)$, but we don’t observe $Z(\bar{r})$

- There is no way of estimating $p(z(\bar{r}) \mid z(r), r)$ without assumptions

\[
p(z(\bar{r}), z(r), r) = p(z(\bar{r}) \mid z(r), r) \cdot p(z(r), r)
\]

- We say that $p(z(\bar{r}) \mid z(r), r)$, and therefore $p(z, r)$, are not identifiable

- **Identifying assumptions** explicitly or implicitly amount to constructing $p(z(\bar{r}) \mid z(r), r)$ from $p(z(r), r)$
The Extrapolation Distribution

▸ Given $R = r$, we observe $Z(r)$, but we don’t observe $Z(\bar{r})$

▸ There is no way of estimating $p(z(\bar{r}) \mid z(r), r)$ without assumptions

\[
p(z(\bar{r}), z(r), r) = p(z(\bar{r}) \mid z(r), r) \cdot p(z(r), r)
\]

▸ We say that $p(z(\bar{r}) \mid z(r), r)$, and therefore $p(z, r)$, are not identifiable

▸ *Identifying assumptions* explicitly or implicitly amount to constructing $p(z(\bar{r}) \mid z(r), r)$ from $p(z(r), r)$
The Extrapolation Distribution

- Given $R = r$, we observe $Z(r)$, but we don’t observe $Z(\bar{r})$

- There is no way of estimating $p(z(\bar{r}) \mid z(r), r)$ without assumptions

\[
p(z(\bar{r}), z(r), r) = \underbrace{p(z(\bar{r}) \mid z(r), r)}_{\text{what we want}} \underbrace{p(z(r), r)}_{\text{what we can get}}
\]

- We say that $p(z(\bar{r}) \mid z(r), r)$, and therefore $p(z, r)$, are not identifiable

- Identifying assumptions explicitly or implicitly amount to constructing $p(z(\bar{r}) \mid z(r), r)$ from $p(z(r), r)$
The Extrapolation Distribution

- Given \(R = r \), we observe \(Z(r) \), but we don’t observe \(Z(\bar{r}) \)

- There is no way of estimating \(p(z(\bar{r}) \mid z(r), r) \) without assumptions

\[
p(z(\bar{r}), z(r), r) = \underbrace{p(z(\bar{r}) \mid z(r), r)}_{\text{what we want}} \underbrace{p(z(r), r)}_{\text{what we can get}}
\]

- We say that \(p(z(\bar{r}) \mid z(r), r) \), and therefore \(p(z, r) \), are not identifiable

- Identifying assumptions explicitly or implicitly amount to constructing \(p(z(\bar{r}) \mid z(r), r) \) from \(p(z(r), r) \)
The Extrapolation Distribution

- Given $R = r$, we observe $Z(r)$, but we don’t observe $Z(\bar{r})$

- There is no way of estimating $p(z(\bar{r}) \mid z(r), r)$ without assumptions

$$p(z(\bar{r}), z(r), r) = \underbrace{p(z(\bar{r}) \mid z(r), r)}_{\text{what we want}} \underbrace{p(z(r), r)}_{\text{what we can get}}$$

- We say that $p(z(\bar{r}) \mid z(r), r)$, and therefore $p(z, r)$, are not identifiable

- Identifying assumptions explicitly or implicitly amount to constructing $p(z(\bar{r}) \mid z(r), r)$ from $p(z(r), r)$
General Identification Strategy

\[p(z(r), r) \]

Identifying assumption A

\[p_A(z, r) \]

Sum over \(r \)

\[p_A(z) \]

- Note that MAR (ignorability) gives you a shortcut to go from \(p(z(r), r) \) to \(p_{MAR}(z) \)

- Otherwise, how do people specify identifying assumptions?
General Identification Strategy

\[p(z_{(r)}, r) \]

Identifying assumption A

\[p_A(z, r) \]

\[p_A(z) \]

- Note that MAR (ignorability) gives you a shortcut to go from \(p(z_{(r)}, r) \) to \(p_{MAR}(z) \)

- Otherwise, how do people specify identifying assumptions?
Note that MAR (ignorability) gives you a shortcut to go from $p(z_r, r)$ to $p_{MAR}(z)$.

Otherwise, how do people specify identifying assumptions?
Factorizations of the Full-Data Distribution

Selection model factorization:

\[p(z, r) = p(r | z)p(z) \]

- The response mechanism \(p(r | z) \) represents the way in which values of study variables get *selected* into the sample

- Natural factorization when we initially had a model \(\{p(z | \theta)\}_\theta \) in mind, say had we not had missing data

- Allows us to continue using model \(\{p(z | \theta)\}_\theta \)

- Identifying assumptions are expressed as restriction on response mechanism \(p(r | z) \)

- We have focused on this approach so far under MAR:

\[p(r | z) = p(r | z_{(r)}) \]
Factorizations of the Full-Data Distribution

Selection model factorization:

\[p(z, r) = p(r \mid z)p(z) \]

- The response mechanism \(p(r \mid z) \) represents the way in which values of study variables get selected into the sample.

- Natural factorization when we initially had a model \(\{p(z \mid \theta)\}_\theta \) in mind, say had we not had missing data.

- Allows us to continue using model \(\{p(z \mid \theta)\}_\theta \).

- Identifying assumptions are expressed as restriction on response mechanism \(p(r \mid z) \).

- We have focused on this approach so far under MAR:

\[p(r \mid z) = p(r \mid z_{(r)}) \]
Factorizations of the Full-Data Distribution

Selection model factorization:

\[p(z, r) = p(r | z)p(z) \]

- The response mechanism \(p(r | z) \) represents the way in which values of study variables get *selected* into the sample.

- Natural factorization when we initially had a model \(\{p(z | \theta)\}_\theta \) in mind, say had we not had missing data.

- Allows us to continue using model \(\{p(z | \theta)\}_\theta \).

- Identifying assumptions are expressed as restriction on response mechanism \(p(r | z) \).

- We have focused on this approach so far under MAR:

\[p(r | z) = p(r | z(r)) \]
Factorizations of the Full-Data Distribution

Selection model factorization:

\[p(z, r) = p(r \mid z)p(z) \]

- The response mechanism \(p(r \mid z) \) represents the way in which values of study variables get *selected* into the sample

- Natural factorization when we initially had a model \(\{p(z \mid \theta)\}_\theta \) in mind, say had we not had missing data

- Allows us to continue using model \(\{p(z \mid \theta)\}_\theta \)

- Identifying assumptions are expressed as restriction on response mechanism \(p(r \mid z) \)

- We have focused on this approach so far under MAR:

\[p(r \mid z) = p(r \mid z(r)) \]
Factorizations of the Full-Data Distribution

Selection model factorization:

\[
p(z, r) = p(r \mid z)p(z)
\]

- The response mechanism \(p(r \mid z)\) represents the way in which values of study variables get *selected* into the sample.

- Natural factorization when we initially had a model \(\{p(z \mid \theta)\}_\theta\) in mind, say had we not had missing data.

- Allows us to continue using model \(\{p(z \mid \theta)\}_\theta\).

- Identifying assumptions are expressed as restriction on response mechanism \(p(r \mid z)\).

- We have focused on this approach so far under MAR:

\[
p(r \mid z) = p(r \mid z(r))
\]
Factorizations of the Full-Data Distribution

Pattern-mixture model factorization:

\[p(z, r) = p(z | r)p(r) \]

- Requires models for distribution of \(Z \) given each value \(R = r \)
- Distribution of study variables is obtained as a mixture of pattern-specific models
 \[p(z) = \sum_r p(z | r)p(r) \]
- This gives an alternative approach for handling missing data
Factorizations of the Full-Data Distribution

Pattern-mixture model factorization:

\[p(z, r) = p(z \mid r)p(r) \]

- Requires models for distribution of \(Z \) given each value \(R = r \)
- Distribution of study variables is obtained as a mixture of pattern-specific models

\[p(z) = \sum_r p(z \mid r)p(r) \]

- This gives an alternative approach for handling missing data
Factorizations of the Full-Data Distribution

Pattern-mixture model factorization:

\[p(z, r) = p(z \mid r)p(r) \]

- Requires models for distribution of \(Z \) given each value \(R = r \)
- Distribution of study variables is obtained as a *mixture* of pattern-specific models

\[p(z) = \sum_r p(z \mid r)p(r) \]

- This gives an alternative approach for handling missing data
Pattern-Mixture Models

▶ The pattern-mixture model factorization explicitly reveals:

\[
p(z) = \sum_r p(z \mid r)p(r)
\]

\[
= \sum_r p(z(\bar{r}) \mid z(r), r)p(z(r) \mid r)p(r)
\]

needs identifying assumption

\[
= \sum_r \underbrace{p(z(\bar{r}) \mid z(r), r)} p(z(r) \mid r)p(r)
\]

can be estimated from data

▶ Explicitly shows what needs identifying assumptions and what can be obtained from data alone
The pattern-mixture model factorization explicitly reveals:

\[
p(z) = \sum_r p(z \mid r)p(r)
\]

\[
= \sum_r p(z(\bar{r}) \mid z(r), r)p(z(r) \mid r)p(r)
\]

needs identifying assumption

\[
= \sum_r \underbrace{p(z(\bar{r}) \mid z(r), r)} p(z(r) \mid r)p(r)
\]

can be estimated from data

Explicitly shows what needs identifying assumptions and what can be obtained from data alone
The pattern-mixture model factorization explicitly reveals:

\[p(z) = \sum_r p(z \mid r)p(r) \]

\[= \sum_r p(z(\bar{r}) \mid z(r), r)p(z(r) \mid r)p(r) \]

needs identifying assumption

\[= \sum_r \underbrace{p(z(\bar{r}) \mid z(r), r)}_{\text{can be estimated from data}} \underbrace{p(z(r) \mid r)p(r)}_{\text{needs identifying assumption}} \]

Explicitly shows what needs identifying assumptions and what can be obtained from data alone.
The pattern-mixture model factorization explicitly reveals:

\[
p(z) = \sum_r p(z \mid r)p(r)
\]

\[
= \sum_r p(z_{\bar{r}} \mid z(r), r)p(z(r) \mid r)p(r)
\]

needs identifying assumption

\[
= \sum_r \underbrace{p(z_{\bar{r}} \mid z(r), r)}_{\text{can be estimated from data}} \underbrace{p(z(r) \mid r)p(r)}_{\text{can be estimated from data}}
\]

Explicitly shows what needs identifying assumptions and what can be obtained from data alone.
Identifying Assumptions for Pattern-Mixture Models

- Identifying assumptions in the framework of pattern mixture models amount to specifying how to construct

\[\{p(z_{\bar{r}} \mid z_r, r)\}_r \]

from

\[\{p(z_r, r)\}_r \]

- Once \(p_A(z_{\bar{r}} \mid z_r, r) \) is specified, according to an assumption \(A \), this defines a full-data density

\[p_A(z_{\bar{r}}, z_r, r) = p_A(z_{\bar{r}} \mid z_r, r)p(z_r, r) \]

- Note that this in turn implies a response mechanism

\[p_A(r \mid z_{\bar{r}}, z_r) = \frac{p_A(z_{\bar{r}}, z_r, r)}{\sum_{r'} p_A(z_{\bar{r}'}, z_{r'}, r')} \]

- Assumptions that lead to response mechanisms that are not particular cases of MAR are nonignorable
Identifying Assumptions for Pattern-Mixture Models

- Identifying assumptions in the framework of pattern mixture models amount to specifying how to construct

\[\{ p(z(\bar{r}) \mid z(r), r) \}_r \]

from

\[\{ p(z(r), r) \}_r \]

- Once \(p_A(z(\bar{r}) \mid z(r), r) \) is specified, according to an assumption \(A \), this defines a full-data density

\[
p_A(z(\bar{r}), z(r), r) = p_A(z(\bar{r}) \mid z(r), r)p(z(r), r)
\]

- Note that this in turn implies a response mechanism

\[
p_A(r \mid z(\bar{r}), z(r)) = \frac{p_A(z(\bar{r}), z(r), r)}{\sum_{r'} p_A(z(\bar{r}'), z(r'), r')}
\]

- Assumptions that lead to response mechanisms that are not particular cases of MAR are nonignorable.
Identifying Assumptions for Pattern-Mixture Models

- Identifying assumptions in the framework of pattern mixture models amount to specifying how to construct

\[\{ p(z_{\bar{r}} | z_r, r) \}_r \]

from

\[\{ p(z_r, r) \}_r \]

- Once \(p_A(z_{\bar{r}} | z_r, r) \) is specified, according to an assumption \(A \), this defines a full-data density

\[
p_A(z_{\bar{r}}, z_r, r) = p_A(z_{\bar{r}} | z_r, r)p(z_r, r)
\]

- Note that this in turn implies a response mechanism

\[
p_A(r | z_{\bar{r}}, z_r) = \frac{p_A(z_{\bar{r}}, z_r, r)}{\sum_{r'} p_A(z_{\bar{r}'}), z_{r'}}, r')
\]

- Assumptions that lead to response mechanisms that are not particular cases of MAR are nonignorable
Identifying Assumptions for Pattern-Mixture Models

- Identifying assumptions in the framework of pattern mixture models amount to specifying how to construct

$$\{ p(z(\bar{r}) \mid z(r), r) \}_r$$

from

$$\{ p(z(r), r) \}_r$$

- Once $p_A(z(\bar{r}) \mid z(r), r)$ is specified, according to an assumption A, this defines a full-data density

$$p_A(z(\bar{r}), z(r), r) = p_A(z(\bar{r}) \mid z(r), r) p(z(r), r)$$

- Note that this in turn implies a response mechanism

$$p_A(r \mid z(\bar{r}), z(r)) = \frac{p_A(z(\bar{r}), z(r), r)}{\sum_{r'} p_A(z(\bar{r}'), z(r'), r')}$$

- Assumptions that lead to response mechanisms that are not particular cases of MAR are nonignorable
Comments on Pattern-Mixture Models

Advantages:

- Identifiability requirements are more explicit than with selection models: easier to understand what is it that you are assuming

- Provides a natural framework for sensitivity analyses

Limitations:

- We cannot continue using model \(\{ p(z | \theta) \}_\theta \)

- Parameters of scientific interest do not explicitly appear in the model

- Requires per-pattern model, say \(\{ p(z_{(r)} | r, \theta_r) \}_{\theta_r} \)

- For general pattern of nonresponse we would need \(2^K - 1 \) models, one for each pattern in \(\{0, 1\}^K \) (minus \(0_K \))

- Most developments under this approach assume monotone nonresponse (e.g., dropout)
Comments on Pattern-Mixture Models

Advantages:

▶ Identifiability requirements are more explicit than with selection models: easier to understand what is it that you are assuming

▶ Provides a natural framework for sensitivity analyses

Limitations:

▶ We cannot continue using model \(\{ p(z \mid \theta) \}_\theta \)

▶ Parameters of scientific interest do not explicitly appear in the model

▶ Requires per-pattern model, say \(\{ p(z_{(r)} \mid r, \theta_r) \}_{\theta_r} \)

▶ For general pattern of nonresponse we would need \(2^K - 1 \) models, one for each pattern in \(\{0, 1\}^K \) (minus \(0^K \))

▶ Most developments under this approach assume monotone nonresponse (e.g., dropout)
Comments on Pattern-Mixture Models

Advantages:

▶ Identifiability requirements are more explicit than with selection models: easier to understand what is it that you are assuming

▶ Provides a natural framework for sensitivity analyses

Limitations:

▶ We cannot continue using model $\{p(z | \theta)\}_\theta$

▶ Parameters of scientific interest do not explicitly appear in the model

▶ Requires per-pattern model, say $\{p(z_{(r)} | r, \theta_r)\}_{\theta_r}$

▶ For general pattern of nonresponse we would need $2^K - 1$ models, one for each pattern in $\{0, 1\}^K$ (minus 0_K)

▶ Most developments under this approach assume monotone nonresponse (e.g., dropout)
Comments on Pattern-Mixture Models

Advantages:

▶ Identifiability requirements are more explicit than with selection models: easier to understand what is it that you are assuming

▶ Provides a natural framework for sensitivity analyses

Limitations:

▶ We cannot continue using model \(\{ p(z | \theta) \}_{\theta} \)

▶ Parameters of scientific interest do not explicitly appear in the model

▶ Requires per-pattern model, say \(\{ p(z_{(r)} | r, \theta_r) \}_{\theta_r} \)

▶ For general pattern of nonresponse we would need \(2^K - 1 \) models, one for each pattern in \(\{0, 1\}^K \) (minus \(0^K \))

▶ Most developments under this approach assume monotone nonresponse (e.g., dropout)
Comments on Pattern-Mixture Models

Advantages:

▶ Identifiability requirements are more explicit than with selection models: easier to understand what is it that you are assuming

▶ Provides a natural framework for sensitivity analyses

Limitations:

▶ We cannot continue using model \(\{ p(z \mid \theta) \}_\theta \)

▶ Parameters of scientific interest do not explicitly appear in the model

▶ Requires per-pattern model, say \(\{ p(z_{(r)} \mid r, \theta_r) \}_{\theta_r} \)

▶ For general pattern of nonresponse we would need \(2^K - 1 \) models, one for each pattern in \(\{0, 1\}^K \) (minus \(0^K \))

▶ Most developments under this approach assume monotone nonresponse (e.g., dropout)
Comments on Pattern-Mixture Models

Advantages:

- Identifiability requirements are more explicit than with selection models: easier to understand what is it that you are assuming
- Provides a natural framework for sensitivity analyses

Limitations:

- We cannot continue using model \(\{ p(z | \theta) \}_\theta \)
- Parameters of scientific interest do not explicitly appear in the model
- Requires per-pattern model, say \(\{ p(z_{(r)} | r, \theta_r) \}_{\theta_r} \)
- For general pattern of nonresponse we would need \(2^K - 1 \) models, one for each pattern in \(\{0, 1\}^K \) (minus \(0_K \))
- Most developments under this approach assume monotone nonresponse (e.g., dropout)
Comments on Pattern-Mixture Models

Advantages:

▶ Identifiability requirements are more explicit than with selection models: easier to understand what is it that you are assuming

▶ Provides a natural framework for sensitivity analyses

Limitations:

▶ We cannot continue using model \(\{ p(z | \theta) \}_\theta \)

▶ Parameters of scientific interest do not explicitly appear in the model

▶ Requires per-pattern model, say \(\{ p(z_{(r)} | r, \theta_r) \}_{\theta_r} \)

▶ For general pattern of nonresponse we would need \(2^K - 1 \) models, one for each pattern in \(\{0, 1\}^K \) (minus \(0_K \))

▶ Most developments under this approach assume monotone nonresponse (e.g., dropout)
Dropout in Longitudinal Study

If missingness comes only from subjects dropping out

- Missingness patterns are uniquely summarized by the dropout time
 \[D = 1 + \sum_{j=1}^{T} R_j \]

- The observed data are obtained as realizations of \((Z(D), D)\)

 where, if \(D = d\), \(Z(d) = (Z_1, \ldots, Z_{d-1})\) and \(Z(\bar{d}) = (Z_d, \ldots, Z_T)\)

- Pattern-mixture model requires modeling
 - \(p(D = d)\): simply take empirical frequency
 - \(p(z(d) \mid D = d)\): depends on variable type
Dropout in Longitudinal Study

If missingness comes only from subjects dropping out

- Missingness patterns are uniquely summarized by the dropout time

\[D = 1 + \sum_{j=1}^{T} R_j \]

- The observed data are obtained as realizations of

\[(Z_{(D)}, D)\]

where, if \(D = d \), \(Z_{(d)} = (Z_1, \ldots, Z_{d-1}) \) and \(Z_{(\bar{d})} = (Z_d, \ldots, Z_T) \)

- Pattern-mixture model requires modeling

 - \(p(D = d) \): simply take empirical frequency
 - \(p(z_{(d)} \mid D = d) \): depends on variable type
Dropout in Longitudinal Study

If missingness comes only from subjects dropping out

- Missingness patterns are uniquely summarized by the dropout time
 \[D = 1 + \sum_{j=1}^{T} R_j \]

- The observed data are obtained as realizations of
 \[(Z(D), D)\]
 where, if \(D = d \), \(Z(d) = (Z_1, \ldots, Z_{d-1}) \) and \(Z(\bar{d}) = (Z_d, \ldots, Z_T) \)

- Pattern-mixture model requires modeling
 - \(p(D = d) \): simply take empirical frequency
 - \(p(z(d) \mid D = d) \): depends on variable type
Dropout in Longitudinal Study

If missingness comes only from subjects dropping out

- Missingness patterns are uniquely summarized by the dropout time

\[D = 1 + \sum_{j=1}^{T} R_j \]

- The *observed data* are obtained as realizations of

\[(Z(D), D)\]

where, if \(D = d \), \(Z(d) = (Z_1, \ldots, Z_{d-1}) \) and \(Z(\bar{d}) = (Z_d, \ldots, Z_T) \)

- Pattern-mixture model requires modeling

 - \(p(D = d) \): simply take empirical frequency

 - \(p(z(d) \mid D = d) \): depends on variable type
Dropout in Longitudinal Study

If missingness comes only from subjects dropping out

- Missingness patterns are uniquely summarized by the dropout time

\[D = 1 + \sum_{j=1}^{T} R_j \]

- The observed data are obtained as realizations of

\[(Z(D), D)\]

where, if \(D = d \), \(Z(d) = (Z_1, \ldots, Z_{d-1}) \) and \(Z(\bar{d}) = (Z_d, \ldots, Z_T) \)

- Pattern-mixture model requires modeling

 - \(p(D = d) \): simply take empirical frequency
 - \(p(z(d) \mid D = d) \): depends on variable type
A Simple Pattern-Mixture Model Under Dropout

In some situations, the following simple implementation of pattern-mixture models (PMMs) might be reasonable:

- **Idea**: for each dropout group, model observed data and extrapolate to missing data.

- **Example**: for each d, fit
 \[E(Y_j \mid D = d) = \beta_{0d} + \beta_{1d} t_j, \]
 using data from $j < d$, and predict for $j \geq d$.

 This implies
 \[E(Y_j) = E[E(Y_j \mid D = d)] = \sum_d p(D = d) \beta_{0d} + t_j \sum_d p(D = d) \beta_{1d} \]

 All parameters $p(d), \beta_{0d}, \beta_{1d}, d = 1, \ldots, T$, can be directly estimated from the observed data (provided dropout starts at time $D = 3$).

- **Note**: that this approach imposes parametric assumptions on the evolution of means over time, and assumes that this trend can be extrapolated.
A Simple Pattern-Mixture Model Under Dropout

In some situations, the following simple implementation of pattern-mixture models (PMMs) might be reasonable

- **Idea:** for each dropout group, model observed data and extrapolate to missing data

- **Example:**
 - For each d, fit
 \[
 E(Y_j | D = d) = \beta_{0d} + \beta_{1d} t_j,
 \]
 using data from $j < d$, and predict for $j \geq d$

 - This implies
 \[
 E(Y_j) = E[E(Y_j | D = d)] = \sum_d p(D = d) \beta_{0d} + t_j \sum_d p(D = d) \beta_{1d}
 \]

 - All parameters $p(d)$, β_{0d}, β_{1d}, $d = 1, \ldots, T$, can be directly estimated from the observed data (provided dropout starts at time $D = 3$)

- **Note that this approach imposes parametric assumptions on the evolution of means over time, and assumes that this trend can be extrapolated**
A Simple Pattern-Mixture Model Under Dropout

In some situations, the following simple implementation of pattern-mixture models (PMMs) might be reasonable

- **Idea:** for each dropout group, model observed data and extrapolate to missing data

- **Example:**
 - For each d, fit
 \[E(Y_j | D = d) = \beta_{0d} + \beta_{1d} t_j, \]
 using data from $j < d$, and predict for $j \geq d$
 - This implies
 \[E(Y_j) = E[E(Y_j | D = d)] = \sum_d p(D = d) \beta_{0d} + t_j \sum_d p(D = d) \beta_{1d} \]

- All parameters $p(d)$, β_{0d}, β_{1d}, $d = 1, \ldots, T$, can be directly estimated from the observed data (provided dropout starts at time $D = 3$)

- Note that this approach imposes parametric assumptions on the evolution of means over time, and assumes that this trend can be extrapolated
A Simple Pattern-Mixture Model Under Dropout

In some situations, the following simple implementation of pattern-mixture models (PMMs) might be reasonable

▶ Idea: for each dropout group, model observed data and extrapolate to missing data

▶ Example:

▶ For each d, fit

$$E(Y_j \mid D = d) = \beta_{0d} + \beta_{1d} t_j,$$

using data from $j < d$, and predict for $j \geq d$

▶ This implies

$$E(Y_j) = E[E(Y_j \mid D = d)] = \sum_d p(D = d) \beta_{0d} + t_j \sum_d p(D = d) \beta_{1d}$$

▶ All parameters $p(d), \beta_{0d}, \beta_{1d}, d = 1, \ldots, T$, can be directly estimated from the observed data (provided dropout starts at time $D = 3$)

▶ Note that this approach imposes parametric assumptions on the evolution of means over time, and assumes that this trend can be extrapolated
A Simple Pattern-Mixture Model Under Dropout

In some situations, the following simple implementation of pattern-mixture models (PMMs) might be reasonable

- Idea: for each dropout group, model observed data and extrapolate to missing data

- Example:
 - For each d, fit

 $$E(Y_j \mid D = d) = \beta_{0d} + \beta_{1d}d_j,$$

 using data from $j < d$, and predict for $j \geq d$

- This implies

 $E(Y_j) = E[E(Y_j \mid D = d)] = \sum_d p(D = d)\beta_{0d} + d_j \sum_d p(D = d)\beta_{1d}$

- All parameters $p(d)$, β_{0d}, β_{1d}, $d = 1, \ldots, T$, can be directly estimated from the observed data (provided dropout starts at time $D = 3$)

- Note that this approach imposes parametric assumptions on the evolution of means over time, and assumes that this trend can be extrapolated
Identifying Assumptions for PMMs Under Dropout

▷ In general, how to obtain $p(z_{(\bar{d})} \mid z_{(d)}, d)$ from $p(z_{(d)}, d)$?

▷ Note that

$$p(z_{(\bar{d})} \mid z_{(d)}, d) = p(z_d, \ldots, z_T \mid z_1, \ldots, z_{d-1}, d)$$

$$= \prod_{\ell=d}^{T} p(z_\ell \mid z_1, \ldots, z_{d-1}, \ldots, z_{\ell-1}, d)$$

$$= \prod_{\ell=d}^{T} p(z_\ell \mid z_{(\ell)}, d)$$

▷ Thus, we need to think how to obtain $p(z_\ell \mid z_{(\ell)}, d)$ for each $\ell \geq d$, $d = 1, \ldots, T$
Identifying Assumptions for PMMs Under Dropout

▷ In general, how to obtain $p(z_{\bar{d}} \mid z_{(d)}, d)$ from $p(z_{(d)}, d)$?

▷ Note that

$$p(z_{\bar{d}} \mid z_{(d)}, d) = p(z_d, \ldots, z_T \mid z_1, \ldots, z_{d-1}, d)$$

$$= \prod_{\ell=d}^{T} p(z_\ell \mid z_1, \ldots, z_{d-1}, \ldots, z_{\ell-1}, d)$$

$$= \prod_{\ell=d}^{T} p(z_\ell \mid z_{(\ell)}, d)$$

▷ Thus, we need to think how to obtain $p(z_\ell \mid z_{(\ell)}, d)$ for each $\ell \geq d$, $d = 1, \ldots, T$
Identifying Assumptions for PMMs Under Dropout

▶ In general, how to obtain $p(z_{(d)} \mid z_{(d)}, d)$ from $p(z_{(d)}, d)$?

▶ Note that

\[
p(z_{(d)} \mid z_{(d)}, d) = p(z_d, \ldots, z_T \mid z_1, \ldots, z_{d-1}, d)
\]
\[
= \prod_{\ell=d}^{T} p(z_{\ell} \mid z_1, \ldots, z_{d-1}, \ldots, z_{\ell-1}, d)
\]
\[
= \prod_{\ell=d}^{T} p(z_{\ell} \mid z_{(\ell)}, d)
\]

▶ Thus, we need to think how to obtain $p(z_{\ell} \mid z_{(\ell)}, d)$ for each $\ell \geq d$, $d = 1, \ldots, T$
Identifying Assumptions for PMMs Under Dropout

- In general, how to obtain \(p(z_{\tilde{d}} \mid z_{(d)}, d) \) from \(p(z_{(d)}, d) \)?

- Note that

\[
p(z_{\tilde{d}} \mid z_{(d)}, d) = p(z_d, \ldots, z_T \mid z_1, \ldots, z_{d-1}, d)
= \prod_{\ell=d}^T p(z_\ell \mid z_1, \ldots, z_{d-1}, \ldots, z_{\ell-1}, d)
= \prod_{\ell=d}^T p(z_\ell \mid z_{(\ell)}, d)
\]

- Thus, we need to think how to obtain \(p(z_\ell \mid z_{(\ell)}, d) \) for each \(\ell \geq d, \quad d = 1, \ldots, T \)
Identifying Assumptions for PMMs Under Dropout

▶ In general, how to obtain \(p(z_{(d)} \mid z(d), d) \) from \(p(z(d), d) \)?

▶ Note that

\[
p(z_{(d)} \mid z(d), d) = p(z_d, \ldots, z_T \mid z_1, \ldots, z_{d-1}, d) = \prod_{\ell=d}^{T} p(z_\ell \mid z_1, \ldots, z_{d-1}, \ldots, z_{\ell-1}, d)
\]

▶ Thus, we need to think how to obtain \(p(z_\ell \mid z(\ell), d) \) for each \(\ell \geq d, d = 1, \ldots, T \)
The Complete-Case Identifying Assumption

Little (JASA 1993) proposed to tie the extrapolation distributions to the distribution of complete cases:

\[
p_{CC}(z_{\ell} \mid z_{(\ell)}, D = d) \equiv p(z_{\ell} \mid z_{(\ell)}, D = T + 1),
\]

for all \(\ell \geq d \), \(d = 1, \ldots, T \).

- The distributions for \(D = T + 1 \) are identifiable from the complete cases

- This strategy could also be used with nonmonotone missingness

- HW4: say \(T = 3 \), write down this restriction for \(\ell \geq d \), \(d = 1, 2, 3 \).
The Complete-Case Identifying Assumption

Little (JASA 1993) proposed to tie the extrapolation distributions to the distribution of complete cases:

$$p_{cc}(z_{\ell} \mid z_{(\ell)}, D = d) \equiv p(z_{\ell} \mid z_{(\ell)}, D = T + 1),$$

for all $\ell \geq d$, $d = 1, \ldots, T$.

- The distributions for $D = T + 1$ are identifiable from the complete cases
- This strategy could also be used with nonmonotone missingness

- HW4: say $T = 3$, write down this restriction for $\ell \geq d$, $d = 1, 2, 3$.
The Complete-Case Identifying Assumption

Little (JASA 1993) proposed to tie the extrapolation distributions to the distribution of complete cases:

\[p_{CC}(z_{\ell} \mid z_{(\ell)}, D = d) \equiv p(z_{\ell} \mid z_{(\ell)}, D = T + 1), \]

for all \(\ell \geq d, \ d = 1, \ldots, T. \)

- The distributions for \(D = T + 1 \) are identifiable from the complete cases
- This strategy could also be used with nonmonotone missingness
- HW4: say \(T = 3 \), write down this restriction for \(\ell \geq d, \ d = 1, 2, 3. \)
The Neighboring-Case Identifying Assumption

The extrapolation distributions could also be obtained from the closest dropout pattern where \(\ell \) is available:

\[
p_{\text{NC}}(z_\ell \mid z(\ell), D = d) \equiv p(z_\ell \mid z(\ell), D = \ell + 1),
\]

for all \(\ell \geq d, \ d = 1, \ldots, T \).

- Among observations with \(D = \ell + 1 \) we get to observe \(z_\ell \) and \(z(\ell) \)

- We could think that observations with \(D = \ell + 1 \) are the best for basing extrapolation of the values of \(Z_\ell \)

- HW4: say \(T = 3 \), write down this restriction for \(\ell \geq d, \ d = 1, 2, 3 \).
The Neighboring-Case Identifying Assumption

The extrapolation distributions could also be obtained from the closest dropout pattern where \(\ell \) is available:

\[
p_{NC}(z_\ell \mid z_{(\ell)}, D = d) \equiv p(z_\ell \mid z_{(\ell)}, D = \ell + 1),
\]
for all \(\ell \geq d, d = 1, \ldots, T \).

- Among observations with \(D = \ell + 1 \) we get to observe \(z_\ell \) and \(z_{(\ell)} \)
- We could think that observations with \(D = \ell + 1 \) are the best for basing extrapolation of the values of \(Z_\ell \)
- HW4: say \(T = 3 \), write down this restriction for \(\ell \geq d, d = 1, 2, 3 \).
The Neighboring-Case Identifying Assumption

The extrapolation distributions could also be obtained from the closest dropout pattern where ℓ is available:

$$p_{NC}(z_\ell \mid z(\ell), D = d) \equiv p(z_\ell \mid z(\ell), D = \ell + 1),$$

for all $\ell \geq d$, $d = 1, \ldots, T$.

- Among observations with $D = \ell + 1$ we get to observe z_ℓ and $z(\ell)$.

- We could think that observations with $D = \ell + 1$ are the best for basing extrapolation of the values of Z_ℓ.

- HW4: say $T = 3$, write down this restriction for $\ell \geq d$, $d = 1, 2, 3$.

The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases where \(\ell \) is available:

\[
p_{AC}(z_\ell | z(\ell), D = d) \equiv p(z_\ell | z(\ell), D > \ell),
\]

for all \(\ell \geq d, \; d = 1, \ldots, T \).

- Among observations with \(D > \ell \) we get to observe \(z_\ell \) and \(z(\ell) \)

- We could think that this approach maximizes the use of available information for basing extrapolation of the values of \(Z_\ell \)

- HW4: say \(T = 3 \), write down this restriction for \(\ell \geq d, \; d = 1, 2, 3 \).

- HW4: under monotone nonresponse, the AC assumption is equivalent to MAR
The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases where ℓ is available:

$$p_{AC}(z_\ell \mid z_{(\ell)}, D = d) \equiv p(z_\ell \mid z_{(\ell)}, D > \ell),$$

for all $\ell \geq d$, $d = 1, \ldots, T$.

- Among observations with $D > \ell$ we get to observe z_ℓ and $z_{(\ell)}$

- We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_ℓ

- HW4: say $T = 3$, write down this restriction for $\ell \geq d$, $d = 1, 2, 3$.

- HW4: under monotone nonresponse, the AC assumption is equivalent to MAR
The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases where ℓ is available:

$$p_{AC}(z_\ell \mid z(\ell), D = d) \equiv p(z_\ell \mid z(\ell), D > \ell),$$

for all $\ell \geq d$, $d = 1, \ldots, T$.

- Among observations with $D > \ell$ we get to observe z_ℓ and $z(\ell)$
- We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_ℓ
- HW4: say $T = 3$, write down this restriction for $\ell \geq d$, $d = 1, 2, 3$.
- HW4: under monotone nonresponse, the AC assumption is equivalent to MAR
The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases where ℓ is available:

$$p_{AC}(z_\ell \mid z_{(\ell)}, D = d) \equiv p(z_\ell \mid z_{(\ell)}, D > \ell),$$

for all $\ell \geq d$, $d = 1, \ldots, T$.

- Among observations with $D > \ell$ we get to observe z_ℓ and $z_{(\ell)}$

- We could think that this approach maximizes the use of available information for basing extrapolation of the values of Z_ℓ

- HW4: say $T = 3$, write down this restriction for $\ell \geq d$, $d = 1, 2, 3$.

- HW4: under monotone nonresponse, the AC assumption is equivalent to MAR
Observational Equivalence

▶ Two full-data distributions are said to be *observationally equivalent* if their implied observed-data distributions are the same

▶ This is, say I have two full-data distributions

\[p_A(z(\bar{r}), z(r), r) \]

and

\[p_B(z(\bar{r}), z(r), r) \]

if

\[\int p_A(z(\bar{r}), z(r), r) \, dz(\bar{r}) = \int p_B(z(\bar{r}), z(r), r) \, dz(\bar{r}) \]

for all \((z(r), r)\), then they are *observationally equivalent*

▶ HW4: the full-data distributions obtained under the CC, NC, and AC restrictions are observationally equivalent

▶ This is an important feature in *sensitivity analysis*! (next class)
Observational Equivalence

- Two full-data distributions are said to be *observationally equivalent* if their implied observed-data distributions are the same.

- This is, say I have two full-data distributions

\[p_A(z(\bar{r}), z(r), r) \]

and

\[p_B(z(\bar{r}), z(r), r) \]

if

\[\int p_A(z(\bar{r}), z(r), r) \, dz(\bar{r}) = \int p_B(z(\bar{r}), z(r), r) \, dz(\bar{r}) \]

for all \((z(r), r)\), then they are *observationally equivalent*.

- HW4: the full-data distributions obtained under the CC, NC, and AC restrictions are observationally equivalent.

- This is an important feature in *sensitivity analysis*! (next class)
Observational Equivalence

- Two full-data distributions are said to be *observationally equivalent* if their implied observed-data distributions are the same.

- This is, say I have two full-data distributions

 \[p_A(z(\bar{r}), z(r), r) \]

 and

 \[p_B(z(\bar{r}), z(r), r) \]

 if

 \[\int p_A(z(\bar{r}), z(r), r) \, dz(\bar{r}) = \int p_B(z(\bar{r}), z(r), r) \, dz(\bar{r}) \]

 for all \((z(r), r)\), then they are *observationally equivalent*.

- HW4: the full-data distributions obtained under the CC, NC, and AC restrictions are observationally equivalent.

- This is an important feature in *sensitivity analysis*! (next class)
Observational Equivalence

▶ Two full-data distributions are said to be *observationally equivalent* if their implied observed-data distributions are the same.

▶ This is, say I have two full-data distributions

\[
p_A(z(\bar{r}), z(r), r)
\]

and

\[
p_B(z(\bar{r}), z(r), r)
\]

if

\[
\int p_A(z(\bar{r}), z(r), r) \, dz(\bar{r}) = \int p_B(z(\bar{r}), z(r), r) \, dz(\bar{r})
\]

for all \((z(r), r)\), then they are *observationally equivalent*.

▶ HW4: the full-data distributions obtained under the CC, NC, and AC restrictions are observationally equivalent.

▶ This is an important feature in *sensitivity analysis*! (next class)
Summary

Main take-aways from today’s lecture:

* The fundamental problem of inference with missing data: *it is impossible without extra, usually untestable, assumptions on how missingness arises*

* Pattern-mixture models provide an alternative way of thinking about missing data*

* Remember the universe of missing-data assumptions:*

Next lecture:

* More on nonignorable missing data (MNAR), and sensitivity analysis*
Summary

Main take-aways from today’s lecture:

- The fundamental problem of inference with missing data: *it is impossible without extra, usually untestable, assumptions on how missingness arises*
- Pattern-mixture models provide an alternative way of thinking about missing data
- Remember the universe of missing-data assumptions:

 MNAR

 MNAR

 MAR

 MCAR

Next lecture:

- More on nonignorable missing data (MNAR), and sensitivity analysis