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So Far

The approaches that we have covered for handling missing data:

I Ad-hoc approaches (imputation, complete cases)

I Frequentist likelihood-based inference

I Bayesian inference

I Multiple imputation

I Inverse-probability weighting

Something they have in common:

I We have assumed MAR (or MCAR), sometimes avoiding to handle
the response mechanism p(r | z)
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Today’s Lecture

I What if we want to move away from MAR?

I We will talk about some fundamental issues for handling missing
data

I Identifiability

I Nonignorability

I This discussion naturally leads to pattern-mixture models

I Reading: Chapter 6 of the lecture notes of Davidian and Tsiatis
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Back to the Basics: Lecture 1

I Y : study variable

I R: response indicator

p(y)︸︷︷︸
what we want

= p(y | R = 0)p(R = 0)︸ ︷︷ ︸+ p(y | R = 1)p(R = 1)︸ ︷︷ ︸
what we can get

We cannot recover p(y | R = 0) nor p(y) from observed data alone

The fundamental problem of inference with missing data: it is impossible
without extra, usually untestable, assumptions on how missingness arises
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Sample Data
I The full-data sample are independent and identically distributed

(i.i.d.) draws from some distribution F

{(Zi ,Ri )}ni=1
i.i.d.∼ F

I Ri determines the part of Zi that we get to observe: Zi(Ri )

I We can think of the generative process, for each i :

Zi =⇒ Ri =⇒ (Zi(Ri ),Ri )

I In this lecture, we delete the subindex i to talk about

I A generic draw from F

I What we could recover provided an infinite sample size

I Separate identifiability issues from estimation issues
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Types of Data

I Full data: (Z ,R)

I Observed data: (Z(R),R)

I Missing data: Z(R̄)

Relationship:

(Z ,R) = (Z(R̄),Z(R),R)
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Distributions of Interest

I Full-data distribution: joint distribution of (Z ,R) with density

p(z , r) ≡ p(z(r̄), z(r), r), for all r

I Observed-data distribution: joint distribution of (Z(R),R) with
density

p(z(r), r) =

∫
p(z(r̄), z(r), r) dz(r̄), for all r

I Missing-data distribution, or extrapolation distribution: conditional
distribution of Z(R̄) given (Z(R),R)

p(z(r̄) | z(r), r) =
p(z(r̄), z(r), r)

p(z(r), r)
, for all r
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The Full-Data Distribution

I Joint distribution of (Z ,R) with density

p(z , r)

I Quantities of interest θ (parameters) depend on the full-data
distribution

p(z , r) −→ p(z) =
∑
r

p(z , r) −→ θ = E [f (Z )] =

∫
f (z)p(z)dz

I For example, say f (Z) = Zj , then

θj = E(Zj) =

∫
zjp(zj)dzj =

∫
zjp(z)dz
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The Observed-Data Distribution
I Given R = r , we observe Z(r)

I We can estimate p(z(r) | R = r) and p(R = r) from observed data

I The observed-data distribution is all we can hope to recover from
data alone

p(z(r), r) = p(z(r) | r)p(r)

I For example, say you can sample indefinitely from the joint
distribution of

Z = (Z1,Z2) and R = (R1,R2)

I If Rj = 0 you don’t see the value of Zj

I What we can estimate from such data:
I p(R = r), r ∈ {0, 1}2

I p(z1 | R = 10)

I p(z2 | R = 01)

I p(z1, z2 | R = 11)
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The Extrapolation Distribution

I Given R = r , we observe Z(r), but we don’t observe Z(r̄)

I There is no way of estimating p(z(r̄) | z(r), r) without assumptions

p(z(r̄), z(r), r)︸ ︷︷ ︸
what we want

=

how to extrapolate︷ ︸︸ ︷
p(z(r̄) | z(r), r) p(z(r), r)︸ ︷︷ ︸

what we can get

I We say that p(z(r̄) | z(r), r), and therefore p(z , r), are not identifiable

I Identifying assumptions explicitly or implicitly amount to
constructing p(z(r̄) | z(r), r) from p(z(r), r)
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General Identification Strategy

p(z(r), r)

pA(z , r)

pA(z)

Identifying assumption A

Sum over r

I Note that MAR (ignorability) gives you a shortcut to go from
p(z(r), r) to pMAR(z)

I Otherwise, how do people specify identifying assumptions?
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Factorizations of the Full-Data Distribution
Selection model factorization:

p(z , r) = p(r | z)p(z)

I The response mechanism p(r | z) represents the way in which values
of study variables get selected into the sample

I Natural factorization when we initially had a model {p(z | θ)}θ in
mind, say had we not had missing data

I Allows us to continue using model {p(z | θ)}θ

I Identifying assumptions are expressed as restriction on response
mechanism p(r | z)

I We have focused on this approach so far under MAR:

p(r | z) = p(r | z(r))
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Factorizations of the Full-Data Distribution

Pattern-mixture model factorization:

p(z , r) = p(z | r)p(r)

I Requires models for distribution of Z given each value R = r

I Distribution of study variables is obtained as a mixture of
pattern-specific models

p(z) =
∑
r

p(z | r)p(r)

I This gives an alternative approach for handling missing data
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Pattern-Mixture Models

I The pattern-mixture model factorization explicitly reveals:

p(z) =
∑
r

p(z | r)p(r)

=
∑
r

p(z(r̄) | z(r), r)p(z(r) | r)p(r)

=
∑
r

needs identifying assumption︷ ︸︸ ︷
p(z(r̄) | z(r), r) p(z(r) | r)p(r)︸ ︷︷ ︸

can be estimated from data

I Explicitly shows what needs identifying assumptions and what can
be obtained from data alone
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Identifying Assumptions for Pattern-Mixture Models
I Identifying assumptions in the framework of pattern mixture models

amount to specifying how to construct

{p(z(r̄) | z(r), r)}r
from

{p(z(r), r)}r

I Once pA(z(r̄) | z(r), r) is specified, according to an assumption A,
this defines a full-data density

pA(z(r̄), z(r), r) = pA(z(r̄) | z(r), r)p(z(r), r)

I Note that this in turn implies a response mechanism

pA(r | z(r̄), z(r)) =
pA(z(r̄), z(r), r)∑
r ′ pA(z(r̄ ′), z(r ′), r ′)

I Assumptions that lead to response mechanisms that are not
particular cases of MAR are nonignorable

15 / 24



Identifying Assumptions for Pattern-Mixture Models
I Identifying assumptions in the framework of pattern mixture models

amount to specifying how to construct

{p(z(r̄) | z(r), r)}r
from

{p(z(r), r)}r

I Once pA(z(r̄) | z(r), r) is specified, according to an assumption A,
this defines a full-data density

pA(z(r̄), z(r), r) = pA(z(r̄) | z(r), r)p(z(r), r)

I Note that this in turn implies a response mechanism

pA(r | z(r̄), z(r)) =
pA(z(r̄), z(r), r)∑
r ′ pA(z(r̄ ′), z(r ′), r ′)

I Assumptions that lead to response mechanisms that are not
particular cases of MAR are nonignorable

15 / 24



Identifying Assumptions for Pattern-Mixture Models
I Identifying assumptions in the framework of pattern mixture models

amount to specifying how to construct

{p(z(r̄) | z(r), r)}r
from

{p(z(r), r)}r

I Once pA(z(r̄) | z(r), r) is specified, according to an assumption A,
this defines a full-data density

pA(z(r̄), z(r), r) = pA(z(r̄) | z(r), r)p(z(r), r)

I Note that this in turn implies a response mechanism

pA(r | z(r̄), z(r)) =
pA(z(r̄), z(r), r)∑
r ′ pA(z(r̄ ′), z(r ′), r ′)

I Assumptions that lead to response mechanisms that are not
particular cases of MAR are nonignorable

15 / 24



Identifying Assumptions for Pattern-Mixture Models
I Identifying assumptions in the framework of pattern mixture models

amount to specifying how to construct

{p(z(r̄) | z(r), r)}r
from

{p(z(r), r)}r

I Once pA(z(r̄) | z(r), r) is specified, according to an assumption A,
this defines a full-data density

pA(z(r̄), z(r), r) = pA(z(r̄) | z(r), r)p(z(r), r)

I Note that this in turn implies a response mechanism

pA(r | z(r̄), z(r)) =
pA(z(r̄), z(r), r)∑
r ′ pA(z(r̄ ′), z(r ′), r ′)

I Assumptions that lead to response mechanisms that are not
particular cases of MAR are nonignorable

15 / 24



Comments on Pattern-Mixture Models
Advantages:

I Identifiability requirements are more explicit than with selection
models: easier to understand what is it that you are assuming

I Provides a natural framework for sensitivity analyses

Limitations:

I We cannot continue using model {p(z | θ)}θ

I Parameters of scientific interest do not explicitly appear in the model

I Requires per-pattern model, say {p(z(r) | r , θr )}θr

I For general pattern of nonresponse we would need 2K − 1 models,
one for each pattern in {0, 1}K (minus 0K )

I Most developments under this approach assume monotone
nonresponse (e.g., dropout)
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Dropout in Longitudinal Study

If missingness comes only from subjects dropping out

I Missingness patterns are uniquely summarized by the dropout time

D = 1 +
T∑
j=1

Rj

I The observed data are obtained as realizations of

(Z(D),D)

where, if D = d , Z(d) = (Z1, . . . ,Zd−1) and Z(d̄) = (Zd , . . . ,ZT )

I Pattern-mixture model requires modeling

I p(D = d): simply take empirical frequency

I p(z(d) | D = d): depends on variable type
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A Simple Pattern-Mixture Model Under Dropout
In some situations, the following simple implementation of
pattern-mixture models (PMMs) might be reasonable

I Idea: for each dropout group, model observed data and extrapolate
to missing data

I Example:

I For each d , fit
E(Yj | D = d) = β0d + β1d tj ,

using data from j < d , and predict for j ≥ d

I This implies

E(Yj) = E [E(Yj | D = d)] =
∑
d

p(D = d)β0d + tj
∑
d

p(D = d)β1d

I All parameters p(d), β0d , β1d , d = 1, . . . ,T , can be directly
estimated from the observed data (provided dropout starts at time
D = 3)

I Note that this approach imposes parametric assumptions on the
evolution of means over time, and assumes that this trend can be
extrapolated
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Identifying Assumptions for PMMs Under Dropout

I In general, how to obtain p(z(d̄) | z(d), d) from p(z(d), d)?

I Note that

p(z(d̄) | z(d), d) = p(zd , . . . , zT | z1, . . . , zd−1, d)

=
T∏
`=d

p(z` | z1, . . . , zd−1, . . . , z`−1, d)

=
T∏
`=d

p(z` | z(`), d)

I Thus, we need to think how to obtain p(z` | z(`), d) for each ` ≥ d ,
d = 1, . . . ,T
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The Complete-Case Identifying Assumption

Little (JASA 1993) proposed to tie the extrapolation distributions to the
distribution of complete cases:

pCC (z` | z(`),D = d) ≡ p(z` | z(`),D = T + 1),

for all ` ≥ d , d = 1, . . . ,T .

I The distributions for D = T + 1 are identifiable from the complete
cases

I This strategy could also be used with nonmonotone missingness

I HW4: say T = 3, write down this restriction for ` ≥ d , d = 1, 2, 3.
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The Neighboring-Case Identifying Assumption

The extrapolation distributions could also be obtained from the closest
dropout pattern where ` is available:

pNC (z` | z(`),D = d) ≡ p(z` | z(`),D = `+ 1),

for all ` ≥ d , d = 1, . . . ,T .

I Among observations with D = `+ 1 we get to observe z` and z(`)

I We could think that observations with D = `+ 1 are the best for
basing extrapolation of the values of Z`

I HW4: say T = 3, write down this restriction for ` ≥ d , d = 1, 2, 3.
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The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases
where ` is available:

pAC (z` | z(`),D = d) ≡ p(z` | z(`),D > `),

for all ` ≥ d , d = 1, . . . ,T .

I Among observations with D > ` we get to observe z` and z(`)

I We could think that this approach maximizes the use of available
information for basing extrapolation of the values of Z`

I HW4: say T = 3, write down this restriction for ` ≥ d , d = 1, 2, 3.

I HW4: under monotone nonresponse, the AC assumption is
equivalent to MAR

22 / 24



The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases
where ` is available:

pAC (z` | z(`),D = d) ≡ p(z` | z(`),D > `),

for all ` ≥ d , d = 1, . . . ,T .

I Among observations with D > ` we get to observe z` and z(`)

I We could think that this approach maximizes the use of available
information for basing extrapolation of the values of Z`

I HW4: say T = 3, write down this restriction for ` ≥ d , d = 1, 2, 3.

I HW4: under monotone nonresponse, the AC assumption is
equivalent to MAR

22 / 24



The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases
where ` is available:

pAC (z` | z(`),D = d) ≡ p(z` | z(`),D > `),

for all ` ≥ d , d = 1, . . . ,T .

I Among observations with D > ` we get to observe z` and z(`)

I We could think that this approach maximizes the use of available
information for basing extrapolation of the values of Z`

I HW4: say T = 3, write down this restriction for ` ≥ d , d = 1, 2, 3.

I HW4: under monotone nonresponse, the AC assumption is
equivalent to MAR

22 / 24



The Available-Case Identifying Assumption

Here, the extrapolation distributions are obtained from all available cases
where ` is available:

pAC (z` | z(`),D = d) ≡ p(z` | z(`),D > `),

for all ` ≥ d , d = 1, . . . ,T .

I Among observations with D > ` we get to observe z` and z(`)

I We could think that this approach maximizes the use of available
information for basing extrapolation of the values of Z`

I HW4: say T = 3, write down this restriction for ` ≥ d , d = 1, 2, 3.

I HW4: under monotone nonresponse, the AC assumption is
equivalent to MAR

22 / 24



Observational Equivalence

I Two full-data distributions are said to be observationally equivalent
if their implied observed-data distributions are the same

I This is, say I have two full-data distributions

pA(z(r̄), z(r), r)

and
pB(z(r̄), z(r), r)

if ∫
pA(z(r̄), z(r), r) dz(r̄) =

∫
pB(z(r̄), z(r), r) dz(r̄)

for all (z(r), r), then they are observationally equivalent

I HW4: the full-data distributions obtained under the CC, NC, and
AC restrictions are observationally equivalent

I This is an important feature in sensitivity analysis! (next class)
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Summary
Main take-aways from today’s lecture:

I The fundamental problem of inference with missing data: it is
impossible without extra, usually untestable, assumptions on how
missingness arises

I Pattern-mixture models provide an alternative way of thinking about
missing data

I Remember the universe of missing-data assumptions:

MNAR

MAR MCAR

Next lecture:
I More on nonignorable missing data (MNAR), and sensitivity analysis
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