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Previous Lectures

Approaches to handling missing data covered so far

I Ad-hoc approaches (imputation, complete cases)
I Not likelihood-based but we want to avoid them if possible

I Frequentist likelihood-based inference
I Estimation via the EM algorithm

I Bayesian inference
I Estimation via Gibbs sampling and data augmentation

I Multiple imputation
I Versions: proper, MICE (others not covered here)
I Congeniality requires being able to see overall procedure as

approximation to Bayesian model (prior + likelihood)

Generally speaking, the last three approaches require a parametric model
(likelihood function), either explicitly or implicitly
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Today’s Lecture1

I Inverse-probability weighting

I Origins in survey sampling

I Augmented inverse-probability weighting

I Double robustness

1Acknowledgment: today’s slides are partially based on materials developed by
Gary Chan
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Outline

Finite Populations and the Horvitz-Thompson Estimator

Inverse-Probability Weighting in Infinite Populations

Augmented Inverse-Probability Weighting

Summary
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Sampling from Finite Populations

Consider a finite population composed of N units

I We know a vector of design variables xi for each unit i = 1, . . . ,N

I We want to learn the mean of an unknown quantity in the
population (y1, . . . , yN),

ȳ =
N∑
i=1

yi/N

I N is large, so measuring yi on every unit is not feasible

I Idea: take a sample of units and measure yi on them

I Remark: all xi and yi values are considered fixed quantities

I Example: every household i has a number yi that represents their
income last year; that number is fixed, regardless of whether the
value came to exist as the result of a random process
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Sampling from Finite Populations
I Denote Ri = 1 if unit i is in the sample, 0 otherwise

I The random vector R = (R1, . . . ,RN) ∈ {0, 1}N indicates the units
included in the sample

I A sample design is a joint probability distribution

p(R1, . . . ,RN | x1, . . . , xN),

giving the probability of selecting each possible sample

I The following two conditions need to hold:

I The probabilities of inclusion depend on the design variables xi only

p(R1, . . . ,RN | x1, . . . , xN , y1, . . . , yN) = p(R1, . . . ,RN | x1, . . . , xN)

I Every unit has a positive probability of being selected

πi ≡ p(Ri = 1 | x1, . . . , xN) > 0

I Note that the sample design and therefore the πi ’s are known!
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Sampling from Finite Populations
Examples of sample designs

I Simple random sample: every sample of size n has the same
probability of being selected, and therefore each unit has the same
probability of being selected

πi = n/N

I Stratified sample: say the xi design variables define J strata
S1, . . . ,SJ (e.g., different combinations of categorical variables)

I Randomly sample nj units from the Nj units in stratum j

I For a unit i ∈ Sj , inclusion probability is:

πi =
nj
Nj

I Stratum proportion:

pj =
Nj

N
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Estimation of Mean in Finite Population
Want to estimate ȳ

I Simple random sample:

ˆ̄y =
1

n

N∑
i=1

Riyi =
1

N

N∑
i=1

Riyi
n/N

=
1

N

N∑
i=1

Riyi
πi

I Stratified sample:
I First, compute sample means ˆ̄yj in each stratum, j = 1, . . . , J.
I Estimate ȳ by taking a weighted average, weighting by strata

proportions

ˆ̄y =
J∑

j=1

Nj

N
ˆ̄yj

=
J∑

j=1

Nj

N

1

nj

∑
i∈Sj

Riyi

=
1

N

N∑
i=1

Riyi
πi

where πi = nj/Nj if unit i is in stratum j
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The Horvitz-Thompson Estimator2

The above ideas can be generalized

I Suppose each unit is included in the sample with probability πi > 0,
πi being an arbitrary but known function of the design variables

I The Horvitz-Thompson estimator of the mean is

ȳHT =
1

N

N∑
i=1

Riyi
πi

I Nowadays also called Inverse-Probability Weighted (IPW) estimator,
where Ri/πi is seen as the weight of unit i in the sample

2Second author was Donovan J. Thompson, former chair of UW Biostat!
https://www.jstor.org/stable/2280784
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The Horvitz-Thompson Estimator
I The Horvitz-Thompson estimator is appealing because it is unbiased

ER(ȳHT ) = ER

(
1

N

N∑
i=1

Riyi
πi

)

=
1

N

N∑
i=1

ER(Ri )yi
πi

=
1

N

N∑
i=1

p(Ri = 1 | x1, . . . , xN)yi
πi

=
1

N

N∑
i=1

yi

I In survey sampling the randomization-based approach to inference is
mainstream, under which the only thing that is random is the
sample selection (the Ri ’s)

I Take a course on survey sampling to learn more about this!
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ER(ȳHT ) = ER

(
1

N

N∑
i=1

Riyi
πi

)

=
1

N

N∑
i=1

ER(Ri )yi
πi

=
1

N

N∑
i=1

p(Ri = 1 | x1, . . . , xN)yi
πi

=
1

N

N∑
i=1

yi

I In survey sampling the randomization-based approach to inference is
mainstream, under which the only thing that is random is the
sample selection (the Ri ’s)

I Take a course on survey sampling to learn more about this!

10 / 27



The Horvitz-Thompson Estimator
I The Horvitz-Thompson estimator is appealing because it is unbiased
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Basu’s Elephant

Many people criticize the Horvitz-Thompson estimator, in particular
Debabrata Basu (1971): An essay on the logical foundations of survey
sampling, Part I.

I Circus owner planning to ship 50 elephants and needs an estimate of
the total weight

I She plans to weight just one elephant: Sambo, the middle-sized
elephant, and take 50ySambo (ySambo is the weight of Sambo) to be
an estimate of the total weight

I Circus’ statistician is horrified because the circus owner gives 0
probability for sampling other elephants

I Statistician developed the following plan: 99% prob. of selecting
Sambo; and equal probability to each of other 49 elephants

I As expected, Sambo is selected so the owner should be happy
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I Circus’ statistician is horrified because the circus owner gives 0
probability for sampling other elephants

I Statistician developed the following plan: 99% prob. of selecting
Sambo; and equal probability to each of other 49 elephants

I As expected, Sambo is selected so the owner should be happy
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Basu’s Elephant

I Circus owner asked if the estimated total weight is 50ySambo since
Sambo was sampled

I Statistician said no; IPW estimate is

50× 1

50
× 1

0.99
ySambo =

100

99
ySambo

I Owner asked what if the largest elephant, Jumbo, had been selected

I Statistician answered: IPW estimate would be

50× 1

50
× 1

0.01/49
yJumbo = 4900yJumbo

I The statistician was immediately fired!
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Basu’s Elephant

I What’s going on with Basu’s elephant example?

I Sample size is too small

I Selection probabilities are too extreme

I Huge standard error by having such extreme selection probabilities

I Over repeated samples, the average estimate is close to the truth,
but each estimate can be far off
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Infinite Population Set-Up

The usual set-up in this class consists of an infinite population
represented by the joint distribution of a vector of random variables. In
particular today we will consider:

I X : vector of always observed random variables

I Y : random variable subject to nonresponse

I R: indicator of whether Y is observed

I Note that the infinite population is the full-data distribution with
density

p(x , y , r) = p(x , y)p(r | x , y)

I The data are n i.i.d. copies of (X ,YR ,R)
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Infinite Population Set-Up

I Say we want to estimate the mean of Y

µ = E (Y ) =

∫
yp(y)dy

I Assume MAR, which in this case is R ⊥⊥ Y | X

I Define the propensity score to be

π(x) = p(R = 1 | x)
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Inverse-Probability Weighting
I The inverse-probability weighted (IPW) estimator of the mean is

µ̂ipw0 =
1

n

n∑
i=1

Ri

π(Xi )
Yi

I Which, again, is unbiased

E (µ̂ipw0) =
1

n

n∑
i=1

E

(
Ri

π(Xi )
Yi

)

=
1

n

n∑
i=1

EXi

(
ERi ,Yi

(
Ri

π(Xi )
Yi | Xi

))

=
1

n

n∑
i=1

EXi

(
E (Ri | Xi )E (Yi | Xi )

π(Xi )

)

=
1

n

n∑
i=1

EXi (E (Yi | Xi ))

=
1

n

n∑
i=1

E (Yi ) =
1

n

n∑
i=1

µ = µ
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Inverse-Probability Weighting

I Unlike in the context of a well-designed survey, π(x) is unknown and
needs to be estimated

I Estimate the propensity scores as π(x ; ψ̂), e.g. using a logistic
regression, and use

µ̂ipw =
1

n

n∑
i=1

Ri

π(Xi ; ψ̂)
Yi

I This estimator is consistent if π(x ; ψ̂) is correctly specified HW4

I IPW was re-introduced by James Robins, Andrea Rotnitzky and Lue
Ping Zhao (JASA, 1994)3 for parameter estimation in
semiparametric models

3https://www.jstor.org/stable/2290910
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Augmented IPW

I IPW is straightforward to implement but can be quite inefficient
(uses only complete cases)

I Consistency of IPW relies on the correctness of model assumptions
for missing data mechanism (propensity score)

I The augmented IPW (AIPW) estimator of the population mean is

µ̂aipw =
1

n

n∑
i=1

RiYi

π(Xi ; ψ̂)
− 1

n

n∑
i=1

(Ri − π(Xi ; ψ̂))

π(Xi ; ψ̂)
m(Xi ; ξ̂)

where m(x ; ξ̂) is an estimate of E (Y | x) among the complete cases,
since under MAR E (Y | x) = E (Y | x ,R = 1)

I AIPW estimators were introduced by Robins, Rotnitzky and Zhao
(1994)

I In the survey sampling world these are called model-assisted survey
estimators (Särndal, Swensson and Wretman, 1992, Springer)
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Augmented IPW
I AIPW usually has a smaller standard error than IPW

I AIPW enjoys a double robustness property: it is consistent for µ if
either

I The propensity score model π(x ;ψ) is correctly specified
I The conditional mean model m(x ; ξ) is correctly specified

I HW4: show that if ψ̂
p−→ ψ∗ and ξ̂

p−→ ξ∗ then

µ̂aipw p−→ E

(
RY

π(X ;ψ∗)
− (R − π(X ;ψ∗))

π(X ;ψ∗)
m(X ; ξ∗)

)

I HW4: show that the above expression can be written as

µ+ EX

[
ER

(
(R − π(X ;ψ∗))

π(X ;ψ∗)
| X
)
EY (Y −m(X ; ξ∗) | X )

]

I We conclude that µ̂aipw p−→ µ when either

I π(X ;ψ∗) = p(R = 1 | X )

I m(X ; ξ∗) = E(Y | X )
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Are Two Models Better Than One?4

4https://projecteuclid.org/euclid.ss/1207580167
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Simulation Studies of Kang and Schafer

I The authors used extensive simulation scenarios to evaluate different
estimators

I Simulation scenarios resemble a quasi-experiment to measure the
effect of dieting on body mass index (BMI) in a large sample of
high-school students

I At baseline, covariates measured include BMI, self-perceived physical
fitness, social acceptance and personality measures

I Outcome is BMI in 1 year, which may be missing

I Response bias is moderate, good overlap between the missing and
non-missing

I Good predictors of the outcomes are available, R2 = 0.81

I Both models are approximately but not exactly true
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Some Conclusions of Kang and Schafer

I “Methods that use inverse-probabilities as weights, whether they are
DR [double robust] or not, are sensitive to misspecification of the
propensity model when some estimated propensities are small”

I “Many DR methods perform better than simple inverse-probability
weighting”

I “None of the DR methods we tried, however, improved upon the
performance of simple regression-based prediction of the missing
values”

I “This study does not represent every missing-data problem that will
arise in practice. But it does demonstrate that, in at least some
settings, two wrong models are not better than one”
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Stabilizing Weights
I What is happening? Similar to Basu’s elephant: weights Ri/π(Xi ; ψ̂)

are too unstable

I Under the true π-model, the weights are expected to be 1:

E

(
R

π(X )

)
= E

(
p(R = 1 | X )

π(X )

)
= 1

I Therefore, when the model is correctly specified,

C =
1

n

n∑
i=1

Ri

π(Xi ; ψ̂)
≈ 1

I However, when the model is misspecified, often C >> 1

I Define the inverse of π̃i = Cπ(Xi ; ψ̂) as the stabilizing weight, so
that

1

n

n∑
i=1

Ri

π̃i
=

1

C

1

n

n∑
i=1

Ri

π(Xi ; ψ̂)
= 1
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Summary

Main take-aways from today’s lecture:

I Inverse-probability weighting
I Origins in survey sampling (Horvitz-Thompson estimator)
I Does not require modeling of the full-data distribution
I Sensitive to misspecification of the propensity score model and to

extreme weights

I Augmented IPW
I Enjoys double-robustness property
I However “in at least some settings, two wrong models are not better

than one” (Kang and Schafer, 2007)

Next lecture:

I Weighted Generalized Estimating Equations
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