
Homework Assignment 3

Statistical Methods for Analysis with Missing Data, Winter 2019

Instructor: Mauricio Sadinle, Department of Biostatistics, U. of Washington – Seattle

Submit your solutions via Canvas. Due by 12:00pm (noon) on March 6, 2019.

From this assignment you can get a maximum of 20 points. The assignment contains a

list of problems, each worth a different number of points. You may choose any combination

of problems that you like. I recommend that you solve a combination of problems that is

worth more than 20 points as a way of gaining insurance against errors in some of your prob-

lem solutions. If you are submitting solutions to theoretical problems, feel free to hand-write

them and submit a scanned copy.

For problems 1–8 we consider the changepoint detection problem presented by Carlin,

Gelfand and Smith (1992).1 The data are counts generated over discrete time as

Xs ∼ Poisson(µ), if s = 1, . . . , τ (1)

Xs ∼ Poisson(λ), if s = τ + 1, . . . , T (2)

where τ is unknown. The vector of parameters is θ = (µ, λ, τ). Consider the independent

priors µ ∼ Gamma(a1, b1), λ ∼ Gamma(a2, b2), τ ∼ Uniform({1, . . . , T}).

1. (1 point) Derive the posterior p(µ, λ, τ | x1, . . . , xT ) up to a proportionality constant.

2. (1 point) Derive the posterior conditional distributions p(µ | λ, τ, x1, . . . , xT ), p(λ |

µ, τ, x1, . . . , xT ), p(τ | µ, λ, x1, . . . , xT ).

3. (3 points) Implement a Gibbs sampler in R that iteratively samples µ, λ, τ from the

conditional posteriors, and illustrate its use with data generated from the model given

by (1) and (2). Submit a report with your results and code.

4. (1 point) Show that / explain why µ ⊥⊥ λ | τ, x1, . . . , xT .

1www.jstor.org/stable/2347570
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5. (1 point) Compute the proportionality constant involved in the posterior p(µ, λ, τ |

x1, . . . , xT ). Fun fact: we know that
∫
xα−1e−βxdx = Γ(α)/βα, for α, β > 0, which can

be seen from the fact that the density function for a gamma random variable integrates

to 1.

6. (1 point) Compute the marginal posterior p(τ | x1, . . . , xT ) in closed form.

7. (1 point) Use p(τ | x1, . . . , xT ) and the fact that µ ⊥⊥ λ | τ, x1, . . . , xT to propose

an approach to sample from the posterior p(µ, λ, τ | x1, . . . , xT ) that does not rely on

Gibbs sampling.

8. (1 point) Implement the posterior sampling approach proposed in the previous problem,

illustrate its use with data generated from the model given by (1) and (2), and compare

with the results obtained from Gibbs sampling. Submit a report with your results and

code.

For problems 9–10, let Z1, Z2 ∈ {1, 2}, R ∈ {0, 1}2. Say the full-data probability density

is given by p(r, z) ≡ p(r1, r2, z1, z2) ≡ πr1r2z1z2 . In HW2 you derived the observed-data

probability density p(r, z(r)) for all elements (r, z(r)) in the sample space of (R,Z(R)). Now,

let the random variable Wj ∈ {1, 2, ∗} be defined as Wj = Zj if Rj = 1, Wj = ∗ if Rj = 0,

j = 1, 2. The probability density of (W1,W2) is given by p(w1, w2) ≡ κw1w2 .

9. (2 points) Explain the relationship between p(w1, w2) and p(r, z(r)).

10. (3 points) Propose a Bayesian approach to estimate the probabilities κ = (κ11, . . . , κ∗∗)

based on a random sample {(Wi1,Wi2)}ni=1
iid∼ Categorical(κ). What is this procedure

estimating in terms of the original Z and R?

For problems 11–12, let Zi = (Zi1, Zi2), Zi1, Zi2 ∈ {1, 2}, Zi’s are i.i.d. Denote

p(Zi1 = zi1, Zi2 = zi2 | θ) = πzi1zi2 ,

and the likelihood of the study variables as L(θ) =
∏

i πzi1zi2 . Let Ri = (Ri1, Ri2), Ri1, Ri2 ∈

{0, 1}, Ri’s are i.i.d. Assume ignorability and a Dirichlet prior for θ = (π11, π12, π21, π22).
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11. (2 points) Note that part (b) in the algorithm presented in slide 31 of Lecture 9 only

uses n
(t)
kl from part (a) of the same algorithm. Find a way of simplifying part (a) so

that we don’t need to sample each z
(t)
i individually but still obtain each n

(t)
kl .

12. (5 points) Implement a Data Augmentation / Gibbs sampler to obtain posterior sam-

ples of θ. Illustrate its use with data generated under MCAR. Submit a report with

your results and code.

For problems 13–14 we have the setup of a two-class mixture model. Think about the

following generative process for the data:

• Each individual i is randomly assigned to one of two classes. Let Ci ∼ Bernoulli(π)

represent the class assigned to individual i.

• Given the value of Ci, the individual gets assigned a univariate measurement Zi | Ci ∼

Poisson(γCi
). Here γj represents the parameter for class j, where j = 0, 1.

• Individuals are generated independently from each other.

• Assume that none of the Ci’s are observed.

We will consider Bayesian estimation of the parameters of this model (π, γ0, γ1), using the

priors γ0 ∼ Gamma(a0, b0), γ1 ∼ Gamma(a1, b1), π ∼ Beta(aπ, bπ).

13. (5 points) Derive a Data Augmentation / Gibbs sampler to estimate the parameters

in this model.

14. (5 points) Code this Data Augmentation / Gibbs sampler in R, and test it with some

data generated using the generative process above. Submit a report with your results

and code.

For problems 15–16, the distribution of the data is

Z = {Zi}ni=1 | µ,Λ
i.i.d.∼ Normal(µ,Λ−1),
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where Zi ∈ RK , µ is the vector of means, Λ−1 is the covariance matrix, and Λ is the inverse

covariance matrix (the precision matrix ). A realized value of Zi is denoted zi, and a realized

value of the data Z is z. The conjugate prior for this model is constructed in two steps

µ | Λ ∼ Normal(µ0, (κ0Λ)−1),

Λ ∼Wishart(υ0,W0).

The joint distribution of (µ,Λ) is called Normal-Wishart.

Important: in this problem set we think of multivariate normals as being parameterized

in terms of covariances, and the parameterization of the Wishart is such that E(Λ) = υ0W0.

This differs from what was initially presented in class, but the lecture notes are now updated

to match the parameterization used here.

Under a normal-Wishart prior, the posterior given data z is also normal-Wishart:

µ | Λ, z ∼ Normal(µ′, (κ′Λ)−1),

Λ | z ∼Wishart(υ′,W ′),

where µ′ = (κ0µ0 + nz̄)/κ′, κ′ = κ0 + n, υ′ = υ0 + n,

W ′ = {W−1
0 + n[Σ̂ +

κ0
κ′

(z̄ − µ0)(z̄ − µ0)
T ]}−1,

z̄ =
∑n

i=1 zi/n, and Σ̂ =
∑n

i=1(zi − z̄)(zi − z̄)T/n.

15. (2 points) Take K = 2 and assume that the Zi’s are subject to ignorable nonresponse.

Derive a Data Augmentation / Gibbs sampler to obtain posterior samples from (µ,Λ).

16. (5 points) Implement the Data Augmentation / Gibbs sampler derived above. Illustrate

its use with bivariate normal data with MCAR missing data. Submit a report with

your results and code.

The following are computational problems that build on R session 3.

17. (10 points) Design and run a simulation study with the goal of exploring the perfor-

mance of proper multiple imputation under the assumption of multivariate normality
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when the data are clearly non-normal, and in terms of estimation of regression coeffi-

cients. Submit your R code and a pdf report with your results. If you plan to work on

this problem, consult with me for guidance.

18. (10 points) Design and run a simulation study with the goal of exploring the perfor-

mance of MICE in terms of estimation of regression coefficients. Your data generation

should be realistic. Submit your R code and a pdf report with your results. If you

plan to work on this problem, consult with me for guidance.
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