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Previous Lectures

I Introduction to Bayesian inference

I Gibbs sampling from posterior distributions

I General setup for Bayesian inference with missing data

I Ignorability for Bayesian inference (Definition 5.12 in Daniels &
Hogan, 2008):

I MAR
I Separability: the full-data parameter ϑ can be decomposed as
ϑ = (θ, ψ), where θ indexes the study-variables model and ψ indexes
the response mechanism

I θ ⊥⊥ ψ a priori

I Data augmentation to handle missing data in Bayesian inference
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Today’s Lecture

Different flavors of multiple imputation

I Proper multiple imputation

I Multiple imputation by chained equations
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Outline

Proper Multiple Imputation
Uncongeniality

Multivariate Imputation by Chained Equations

Summary
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Multiple Imputation

Single imputation is appealing because of its simplicity, but we shouldn’t
treat the imputed data as if it was all observed data

I Remember: single imputation leads to overconfidence in results,
underestimation of standard errors

I Idea: maybe we can account for the extra uncertainty coming from
the fact that we are imputing the missing data

Rubin (1987, Multiple Imputation for Nonresponse in Surveys, Wiley)
proposed:

I For each individual, randomly impute the missing values M times to
create M completed datasets

I Run the analysis of interest on each of these M completed datasets

I Combine the results from the M analyses
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Proper Multiple Imputation under Ignorability
I For each individual, randomly impute the missing values M times to

create M completed datasets

I Sample {Z(m)
r̄ }Mm=1

iid∼ p(zr̄ | zr)

I Create M completed datasets {(zr, z(m)
r̄ )}Mm=1

I Run the analysis of interest on each of these M completed datasets

{ θ̂MLE(zr, z
(m)
r̄ ), V̂ [θ̂MLE(zr, z

(m)
r̄ )] }Mm=1

I Combine the results of the M analyses

θ̂MI =
1

M

M∑
m=1

θ̂MLE(zr, z
(m)
r̄ ),

V̂ (θ̂MI) =
1

M

M∑
m=1

V̂ [θ̂MLE(zr, z
(m)
r̄ )] +

(
1 +

1

M

)
1

M − 1

M∑
m=1

[θ̂MLE(zr, z
(m)
r̄ ) − θ̂MI][θ̂MLE(zr, z

(m)
r̄ ) − θ̂MI]

T
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Multiple Imputation

What’s the justification for this procedure?

I MI can be justified from a Bayesian point of view

I Actual practice of MI is an approximation of the Bayesian procedure
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Bayesian Derivation of Multiple Imputation

Recall that, given a prior p(θ, φ), Bayesian inferences are based on the
posterior distribution

p(θ, φ | r, zr) =
p(θ, φ)

∫
Zr̄

p(r | z, φ)p(z | θ) dzr̄

p(r, zr)
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p(r, zr)

p(r, z)

p(r, z)
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p(r, z)
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p(θ, φ | r, zr, zr̄)p(zr̄ | r, zr) dzr̄
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M
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p(θ, φ | r, zr, z(m)
r̄ ), with {z(m)
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iid∼ p(zr̄ | r, zr)
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Bayesian Derivation of Multiple Imputation

A purely Bayesian version of MI (without assuming ignorability):

I Sample {z(m)
r̄ }Mm=1

iid∼ p(zr̄ | r, zr)

I Create M completed datasets {(r, zr, z(m)
r̄ )}Mm=1

I Obtain posteriors using each completed dataset p(θ, φ | r, zr, z(m)
r̄ )

I Combine individual posteriors

p(θ, φ | r, zr) ≈
1

M

M∑
m=1

p(θ, φ | r, zr, z(m)
r̄ )

“In a nutshell, Rubin’s MI is simply a size m Monte Carlo simulation”
(Xie & Meng, 2017, Statistica Sinica)1

1http://dx.doi.org/10.5705/ss.2014.067
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Bayesian Derivation of MI under Ignorability

A purely Bayesian version of MI under ignorability:

I Sample {z(m)
r̄ }Mm=1

iid∼ p(zr̄ | zr)

I Create M completed datasets {(zr, z(m)
r̄ )}Mm=1

I Obtain posteriors using each completed dataset p(θ | zr, z(m)
r̄ )

I Combine individual posteriors

p(θ | zr) ≈
1

M

M∑
m=1

p(θ | zr, z(m)
r̄ )

For the rest of today’s session we will assume ignorability
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Bayesian Derivation of MI under Ignorability
A further approximation based on Bernstein–von Mises theorem

I Heuristically, we say that asymptotically

p(θ | zr) ≈ N(θ̂MLE, V̂ [θ̂MLE])

I Therefore, for large sample sizes, instead of averaging the individual
posteriors we only need the posterior mean and covariance

θ̂MLE ≈ E (θ | zr)
= Ezr̄ [E (θ | zr, zr̄) | zr]

≈ 1

M

M∑
m=1

θ̂MLE(zr, z
(m)
r̄ )

V̂ [θ̂MLE] ≈ V (θ | zr)
= Ezr̄ [V (θ | zr, zr̄) | zr] + Vzr̄ [E (θ | zr, zr̄) | zr]

≈ 1

M

M∑
m=1

V̂ [θ̂MLE(zr, z
(m)
r̄ )] +

(
1 +

1

M

)
V̂zr̄ [θ̂MLE(zr, z

(m)
r̄ )]
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Bayesian Derivation of MI under Ignorability

Where does
(
1 + 1

M

)
come from?

I Adjustment for finite number of imputations

I Derived under an extra set of assumptions (Section 3.3 of Rubin
(1987))

I Negligible for a moderate number of imputations

13 / 32



Comments on Multiple Imputation

Wait a second!

I What is p(zr̄ | zr) and how do we sample from it?

p(zr̄ | zr) =

∫
θ

p(zr̄ | zr, θ)p(θ | zr)dθ

I So, to obtain a draw from conditional distribution Zr̄ | zr we can

I Draw θ(m) from p(θ | zr)

I Draw z(m)
r̄ from p(zr̄ | zr, θ(m))
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Comments on Multiple Imputation

Therefore, to approximate p(θ | zr) via MI, part of what we need to do is

I Sample {z(m)
r̄ }Mm=1

iid∼ p(zr̄ | zr) to create M completed datasets

I To obtain a draw z
(m)
r̄ , we need to

I Draw θ(m) from p(θ | zr)

I Draw z(m)
r̄ from p(zr̄ | zr, θ(m))

Confused anyone?
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Comments on Multiple Imputation

I You need to sample from p(θ | zr) to approximate p(θ | zr) via MI

I If you can directly work with p(θ | zr), then MI seems pointless (e.g.,
if you are doing the imputation and the analysis)

I Rubin’s motivation for MI:

I A statistical agency needs to publish a dataset with missingness

I It instead publishes M completed datasets

I Analysts run analyses on each completed dataset and combine
results

I Analysts don’t have to worry about the missing data problem
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Comments on Multiple Imputation

Just a “tiny” detail:

I Analysts don’t usually use the same model used by the imputer!

I Models might be uncongenial

17 / 32



Outline

Proper Multiple Imputation
Uncongeniality

Multivariate Imputation by Chained Equations

Summary
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Uncongeniality

Xiao-Li Meng (1994, Statistical Science) described this issue:

I Multiple imputations are based on an imputation model

I Analysts use an analysis procedure

I Imputation and analysis might be incompatible or uncongenial
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Uncongeniality

Meng (1994):

I From the analyst’s point of view:

I Pobs : inferential procedure with incomplete data, e.g. derived from
Lobs(θ | z(r)) and p(θ), summarized by {θ̂MLE(z(r)), V̂ [θ̂MLE(z(r))]}

I Pcom: inferential procedure with complete data, e.g. derived from
L(θ | z(r), z(̄r)) and p(θ), summarized by

{θ̂MLE(z(r), z(̄r)), V̂ [θ̂MLE(z(r), z(̄r))]}

I From the imputer’s point of view:

I Imputations are drawn from a conditional distribution g(zr̄ | zr,A),
where A corresponds to extra variables that might be available to the
imputer but not to the analyst
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Uncongeniality

Meng (1994):

I Congeniality requires the existence of a Bayesian model (prior and
likelihood) F such that

I The posterior mean and variance of θ under F given incomplete data
are asymptotically the same as Pobs ≡ {θ̂MLE(z(r)), V̂ [θ̂MLE(z(r))]}

I The posterior mean and variance of θ under F given complete data
are asymptotically the same as
Pcom ≡ {θ̂MLE(z(r), z(̄r)), V̂ [θ̂MLE(z(r), z(̄r))]}

I The posterior predictive density f (zr̄ | zr) under F is identical to
g(zr̄ | zr,A) (from where imputations are drawn)
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Uncongeniality

Xie & Meng (2017, Statistica Sinica):

“When the imputation model class and the (embedded) analyst’s model
class differ, the behavior of Rubin’s rules becomes very complicated,
capable of producing inconsistent variance estimators, a matter that has
received recurrent criticisms”

I Confidence intervals might not be valid (less coverage than desired)
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Uncongeniality

Xie & Meng (2017, Statistica Sinica) conclude:

I Imputation model should be more general than analysis model to
obtain valid confidence intervals from Rubin’s rules

I “In general, uncongenality should be regarded as the rule rather than
the exception, and a simple confidence valid procedure to combat
any degree of uncongenality is to double Rubin’s MI variance
estimate”
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Modeling Multivariate Distributions

I The imputation part of multiple imputation requires a model for the
joint distribution of the study variables

I Which models are common for multivariate distributions?
I Multivariate normal for continuous variables
I Multinomial for categorical variables

I What if we have a mix of variable types?
I Counts
I Continuous, some nonnegative, some skewed
I Categorical, some nominal, some ordinal
I Mixed type, perhaps zero inflated

I Flexible models for variables of mixed type do exist, but they are a
current area of research (e.g., Murray & Reiter, JASA 2016)
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Modeling Conditional Distributions

On the other hand, we know a lot about, and have a lot of software for,
modeling response variables of different types in a regression context

I Continuous response: linear regression

I Binary response: logistic regression

I In general: generalized linear models

26 / 32



Imputing One Variable

Say Z = (Y1, . . . ,YK ), and only Y1 is subject to missingness

I We only need to model Y1 | Y2, . . . ,YK , say using

p(y1 | y2, . . . , yK , θ)

I To impute missing Y1’s via multiple imputation, we need to

I Draw θ(m) from p(θ | zr) ∝ p(θ)
∏

i :ri=1 p(yi1 | yi2, . . . , yiK , θ)

I Draw y
(m)
i1 from p(y1 | yi2, . . . , yiK , θ(m)) if yi1 is missing
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Multivariate Imputation by Chained Equations

Multivariate Imputation by Chained Equations (MICE) (van Buuren
2007, van Buuren and Groothuis-Oudshoorn 20112) is an ad-hoc multiple
imputation procedure that builds on the previous idea

I If each Y1, . . . ,YK is subject to missingness, we can posit K
different regression models

p1(y1 | y−1, θ1)

p2(y2 | y−2, θ2)

...

pK (yK | y−K , θK )

I θk : parameters of the kth conditional distribution

I y−k = (y1, . . . , yk−1, yk+1, . . . , yK )

I Key idea: use these models to sequentially impute, one variable at a
time. Repeat this over a number of iterations

2https://www.jstatsoft.org/article/view/v045i03/v45i03.pdf
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Multivariate Imputation by Chained Equations
The MICE algorithm:

I Initialize the algorithm by randomly imputing the missing values of
each variable/column by observed values of that variable/column.

Denote this initial completed data as y
(0)
1 , . . . , y

(0)
K

I Run a pseudo Gibbs/Data Augmentation sampler, with tth iteration:

θ
(t)
1 ∼p1(θ1 | y1(r1), y

(t−1)
2 , . . . , y(t−1)

K ) ∝ p1(θ1)
∏

i :ri1=1

p1(yi1 | y (t−1)
i2 , . . . , y

(t−1)
iK , θ1)

y
(t)
i1 ∼p1(y1 | y (t−1)

i2 , . . . , y
(t−1)
iK , θ

(t)
1 ), for all missing yi1

...

θ
(t)
K ∼pK (θK | yK(rK ), y

(t)
1 , . . . , y(t)

K−1) ∝ pK (θK )
∏

i :riK =1

pK (yiK | y (t)
i1 , . . . , y

(t)
i,K−1, θK )

y
(t)
iK ∼pK (yK | y (t)

i1 , . . . , y
(t)
i,K−1, θ

(t)
K ), for all missing yiK

I Iterate for a number of times
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Multivariate Imputation by Chained Equations

Comments:

I MICE is implemented in R, in the package mice

I Authors of mice suggest running the algorithm for 10 to 20
iterations

I mice package gives you m imputed datasets from m runs of the
previous algorithm

I The idea is to use Rubin’s combining rules with these m datasets

Caveats:

I Lack of theoretical study of this method, although incredibly
popular!

I In general, the K conditional models will not be compatible, that is,
there might not exist a joint distribution with such conditionals!
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Summary

Main take-aways from today’s lecture:

I Multiple Imputation:

I Monte Carlo approximation of proper Bayesian procedure

I Designed in the context of a statistical agency that needs to release
complete datasets

I Goal is to account for imputation uncertainty

I Uncongeniality generally leads to invalidity of inferences based on
Rubin’s combining rules

I MICE is a practical implementation of multiple imputation that
builds on Gibbs sampling ideas, but lacks theoretical guarantees

Next lecture:

I R session 3
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