Statistical Methods for Analysis with Missing Data

Lecture 10: multiple imputation

Mauricio Sadinle

Department of Biostatistics **W** UNIVERSITY of WASHINGTON

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q で
1/32

Previous Lectures

- Introduction to Bayesian inference
- Gibbs sampling from posterior distributions
- General setup for Bayesian inference with missing data
- Ignorability for Bayesian inference (Definition 5.12 in Daniels & Hogan, 2008):
 - MAR
 - Separability: the full-data parameter ϑ can be decomposed as $\vartheta = (\theta, \psi)$, where θ indexes the study-variables model and ψ indexes the response mechanism
 - $\theta \perp \psi$ a priori

Data augmentation to handle missing data in Bayesian inference

Today's Lecture

Different flavors of multiple imputation

Proper multiple imputation

Multiple imputation by chained equations

Outline

Proper Multiple Imputation

Uncongeniality

Multivariate Imputation by Chained Equations

Summary

< □ > < 部 > < 言 > < 言 > こ の < ⊙ 4/32

Single imputation is appealing because of its simplicity, but we shouldn't treat the imputed data as if it was all observed data

- Remember: single imputation leads to overconfidence in results, underestimation of standard errors
- Idea: maybe we can account for the extra uncertainty coming from the fact that we are imputing the missing data

Rubin (1987, *Multiple Imputation for Nonresponse in Surveys*, Wiley) proposed:

- ► For each individual, *randomly impute* the missing values *M* times to create *M* completed datasets
- ▶ Run the analysis of interest on each of these *M* completed datasets
- Combine the results from the *M* analyses

Single imputation is appealing because of its simplicity, but we shouldn't treat the imputed data as if it was all observed data

- Remember: single imputation leads to overconfidence in results, underestimation of standard errors
- Idea: maybe we can account for the extra uncertainty coming from the fact that we are imputing the missing data

Rubin (1987, *Multiple Imputation for Nonresponse in Surveys*, Wiley) proposed:

- ► For each individual, *randomly impute* the missing values *M* times to create *M* completed datasets
- ▶ Run the analysis of interest on each of these *M* completed datasets
- Combine the results from the *M* analyses

Single imputation is appealing because of its simplicity, but we shouldn't treat the imputed data as if it was all observed data

- Remember: single imputation leads to overconfidence in results, underestimation of standard errors
- Idea: maybe we can account for the extra uncertainty coming from the fact that we are imputing the missing data

Rubin (1987, *Multiple Imputation for Nonresponse in Surveys*, Wiley) proposed:

- ► For each individual, *randomly impute* the missing values *M* times to create *M* completed datasets
- ▶ Run the analysis of interest on each of these *M* completed datasets

Combine the results from the *M* analyses

Single imputation is appealing because of its simplicity, but we shouldn't treat the imputed data as if it was all observed data

- Remember: single imputation leads to overconfidence in results, underestimation of standard errors
- Idea: maybe we can account for the extra uncertainty coming from the fact that we are imputing the missing data

Rubin (1987, *Multiple Imputation for Nonresponse in Surveys*, Wiley) proposed:

- ► For each individual, *randomly impute* the missing values *M* times to create *M* completed datasets
- \blacktriangleright Run the analysis of interest on each of these M completed datasets
- Combine the results from the *M* analyses

- ► For each individual, randomly impute the missing values *M* times to create *M* completed datasets
 - Sample $\{\mathbf{Z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$
 - Create *M* completed datasets {(z_r, z_r^(m))}^M_{m=1}

► Run the analysis of interest on each of these *M* completed datasets $\{ \hat{\theta}_{MLE}(\mathbf{z}_{r}, \mathbf{z}_{\bar{r}}^{(m)}), \hat{V}[\hat{\theta}_{MLE}(\mathbf{z}_{r}, \mathbf{z}_{\bar{r}}^{(m)})] \}_{m=1}^{M}$

Combine the results of the *M* analyses

$$\hat{\theta}_{\mathrm{MI}} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathrm{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\overline{\mathsf{r}}}^{(m)}),$$

$$\hat{V}(\hat{\theta}_{\mathsf{MI}}) = \frac{1}{M} \sum_{m=1}^{M} \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)})] + \left(1 + \frac{1}{M}\right) \frac{1}{M-1} \sum_{m=1}^{M} [\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)}) - \hat{\theta}_{\mathsf{MI}}] [\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)}) - \hat{\theta}_{\mathsf{MI}}]^{T}$$

- ► For each individual, randomly impute the missing values *M* times to create *M* completed datasets
 - Sample $\{\mathbf{Z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$
 - Create *M* completed datasets {(z_r, z_r^(m))}^M_{m=1}

▶ Run the analysis of interest on each of these *M* completed datasets

$\{ \ \hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)}), \ \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)})] \ \}_{m=1}^{M}$

Combine the results of the *M* analyses

$$\hat{\theta}_{\mathsf{MI}} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\overline{\mathsf{r}}}^{(m)}),$$

$$\hat{V}(\hat{\theta}_{\mathsf{MI}}) = \frac{1}{M} \sum_{m=1}^{M} \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{r}}^{(m)})] + \left(1 + \frac{1}{M}\right) \frac{1}{M-1} \sum_{m=1}^{M} [\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{r}}^{(m)}) - \hat{\theta}_{\mathsf{MI}}] [\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{r}}^{(m)}) - \hat{\theta}_{\mathsf{MI}}]^{T}$$

$$= \mathbf{P} \cdot \mathbf{P}$$

- For each individual, randomly impute the missing values M times to create M completed datasets
 - Sample $\{\mathbf{Z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$

Create *M* completed datasets {(z_r, z_r^(m))}^M_{m=1}

▶ Run the analysis of interest on each of these *M* completed datasets

 $\{ \hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)}), \ \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)})] \}_{m=1}^{M}$

Combine the results of the M analyses

$$\hat{\theta}_{\mathsf{MI}} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\bar{\mathsf{r}}}^{(m)}),$$

$$\hat{V}(\hat{\theta}_{\mathsf{MI}}) = \frac{1}{M} \sum_{m=1}^{M} \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{r}}^{(m)})] + \left(1 + \frac{1}{M}\right) \frac{1}{M-1} \sum_{m=1}^{M} [\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{r}}^{(m)}) - \hat{\theta}_{\mathsf{MI}}] [\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{r}}^{(m)}) - \hat{\theta}_{\mathsf{MI}}]^{T}$$

$$< \mathbf{P} \cdot \langle \mathbf{P} \rangle \langle \mathbf{E} \rangle \langle \mathbf{$$

- ► For each individual, randomly impute the missing values *M* times to create *M* completed datasets
 - Sample $\{\mathbf{Z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$

• Create *M* completed datasets
$$\{(\mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)})\}_{m=1}^{M}$$

▶ Run the analysis of interest on each of these *M* completed datasets

 $\{ \hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)}), \ \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)})] \}_{m=1}^{M}$

Combine the results of the *M* analyses

$$\hat{\theta}_{\mathrm{MI}} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathrm{MLE}}(\mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)}),$$

$$\hat{\mathcal{V}}(\hat{\theta}_{\mathsf{MI}}) = \frac{1}{M} \sum_{m=1}^{M} \hat{\mathcal{V}}[\hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\overline{\mathsf{r}}}^{(m)})] + \left(1 + \frac{1}{M}\right) \frac{1}{M-1} \sum_{m=1}^{M} [\hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\overline{\mathsf{r}}}^{(m)}) - \hat{\theta}_{\mathsf{MI}}] [\hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\overline{\mathsf{r}}}^{(m)}) - \hat{\theta}_{\mathsf{MI}}]^{\mathsf{T}}$$

- For each individual, randomly impute the missing values M times to create M completed datasets
 - Sample $\{\mathbf{Z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$

• Create *M* completed datasets
$$\{(\mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)})\}_{m=1}^{M}$$

▶ Run the analysis of interest on each of these *M* completed datasets

 $\{ \hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)}), \ \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)})] \}_{m=1}^{M}$

Combine the results of the *M* analyses

$$\hat{\theta}_{\mathsf{MI}} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\overline{\mathsf{r}}}^{(m)}),$$

$$\hat{V}(\hat{\theta}_{\mathsf{MI}}) = \frac{1}{M} \sum_{m=1}^{M} \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\overline{\mathsf{r}}}^{(m)})] + \left(1 + \frac{1}{M}\right) \frac{1}{M-1} \sum_{m=1}^{M} [\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\overline{\mathsf{r}}}^{(m)}) - \hat{\theta}_{\mathsf{MI}}] [\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\overline{\mathsf{r}}}^{(m)}) - \hat{\theta}_{\mathsf{MI}}]^{T}$$

What's the justification for this procedure?

- MI can be justified from a Bayesian point of view
- Actual practice of MI is an approximation of the Bayesian procedure

Recall that, given a prior $p(\theta, \phi)$, Bayesian inferences are based on the posterior distribution

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) = \frac{p(\theta, \phi) \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta) \ d\mathbf{z}_{\bar{\mathbf{r}}}}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})}$$

(ロ) (部) (目) (日) (日) (の)

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) = \frac{p(\theta, \phi) \int_{Z_{\bar{r}}} p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta) \, d\mathbf{z}_{\bar{r}}}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})}$$

$$= \int_{Z_{\bar{r}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \, dz_{\bar{r}}$$

$$= \int_{Z_{\bar{r}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z})} \, dz_{\bar{r}}$$

$$= \int_{Z_{\bar{r}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \, dz_{\bar{r}}$$

$$= \int_{Z_{\bar{r}}} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{r}}) p(\mathbf{z}_{\bar{r}} \mid \mathbf{r}, \mathbf{z}_{r}) \, dz_{\bar{r}}$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{r}}^{(m)}), \text{ with } \{\mathbf{z}_{\bar{r}}^{(m)}\}_{m} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{r}} \mid \mathbf{r}, \mathbf{z}_{r})$$

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) = \frac{p(\theta, \phi) \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta) \, d\mathbf{z}_{\bar{\mathbf{r}}}}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}) p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)}), \text{ with } \{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m} \stackrel{id}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}})$$

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) = \frac{p(\theta, \phi) \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta) \, d\mathbf{z}_{\bar{\mathbf{r}}}}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}) p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) = \frac{p(\theta, \phi) \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta) \, d\mathbf{z}_{\bar{\mathbf{r}}}}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}) p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}), \text{ with } \{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}})$$

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) = \frac{p(\theta, \phi) \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta) \, d\mathbf{z}_{\bar{\mathbf{r}}}}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z})} \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$= \int_{\mathcal{Z}_{\bar{\mathbf{r}}}} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}) p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) \, d\mathbf{z}_{\bar{\mathbf{r}}}$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}), \text{ with } \{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m} \stackrel{id}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}})$$

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) = \frac{p(\theta, \phi) \int_{\mathcal{Z}_{\bar{r}}} p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta) \, d\mathbf{z}_{\bar{r}}}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})}$$

$$= \int_{\mathcal{Z}_{\bar{r}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \, d\mathbf{z}_{\bar{r}}$$

$$= \int_{\mathcal{Z}_{\bar{r}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z}_{\mathbf{r}})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z})} \, d\mathbf{z}_{\bar{r}}$$

$$= \int_{\mathcal{Z}_{\bar{r}}} \frac{p(\theta, \phi) p(\mathbf{r} \mid \mathbf{z}, \phi) p(\mathbf{z} \mid \theta)}{p(\mathbf{r}, \mathbf{z})} \frac{p(\mathbf{r}, \mathbf{z})}{p(\mathbf{r}, \mathbf{z})} \, d\mathbf{z}_{\bar{r}}$$

$$= \int_{\mathcal{Z}_{\bar{r}}} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{r}}) p(\mathbf{z}_{\bar{r}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) \, d\mathbf{z}_{\bar{r}}$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{r}}^{(m)}), \text{ with } \{\mathbf{z}_{\bar{r}}^{(m)}\}_{m} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{r}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}})$$

A purely Bayesian version of MI (without assuming ignorability):

► Sample
$$\{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}})$$

• Create *M* completed datasets $\{(\mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)})\}_{m=1}^{M}$

► Obtain posteriors using each completed dataset $p(\theta, \phi | \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\mathbf{r}}^{(m)})$

Combine individual posteriors

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) \approx \frac{1}{M} \sum_{m=1}^{M} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\mathbf{r}}^{(m)})$$

¹http://dx.doi.org/10.5705/ss.2014.067

A purely Bayesian version of MI (without assuming ignorability):

Sample
$$\{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}})$$

- Create *M* completed datasets $\{(\mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)})\}_{m=1}^{M}$
- Obtain posteriors using each completed dataset $p(\theta, \phi | \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\mathbf{r}}^{(m)})$
- Combine individual posteriors

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) \approx \frac{1}{M} \sum_{m=1}^{M} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\overline{\mathbf{r}}}^{(m)})$$

¹http://dx.doi.org/10.5705/ss.2014.067

A purely Bayesian version of MI (without assuming ignorability):

► Sample
$$\{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}})$$

- Create *M* completed datasets $\{(\mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)})\}_{m=1}^{M}$
- Obtain posteriors using each completed dataset $p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\mathbf{r}}^{(m)})$

Combine individual posteriors

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) \approx \frac{1}{M} \sum_{m=1}^{M} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\overline{\mathbf{r}}}^{(m)})$$

A purely Bayesian version of MI (without assuming ignorability):

► Sample
$$\{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}})$$

- Create *M* completed datasets $\{(\mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)})\}_{m=1}^{M}$
- Obtain posteriors using each completed dataset $p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\mathbf{r}}^{(m)})$
- Combine individual posteriors

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) \approx \frac{1}{M} \sum_{m=1}^{M} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\overline{\mathbf{r}}}^{(m)})$$

A purely Bayesian version of MI (without assuming ignorability):

► Sample
$$\{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}})$$

- Create *M* completed datasets $\{(\mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)})\}_{m=1}^{M}$
- Obtain posteriors using each completed dataset $p(\theta, \phi | \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\mathbf{r}}^{(m)})$
- Combine individual posteriors

$$p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}) \approx \frac{1}{M} \sum_{m=1}^{M} p(\theta, \phi \mid \mathbf{r}, \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\overline{\mathbf{r}}}^{(m)})$$

¹http://dx.doi.org/10.5705/ss.2014.067

A purely Bayesian version of MI under ignorability:

► Sample
$$\{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$$

Create *M* completed datasets {(z_r, z_r^(m))}^M_{m=1}

• Obtain posteriors using each completed dataset $p(\theta \mid \mathbf{z_r}, \mathbf{z_r}^{(m)})$

Combine individual posteriors

$$p(\theta \mid \mathbf{z}_{\mathbf{r}}) \approx \frac{1}{M} \sum_{m=1}^{M} p(\theta \mid \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\overline{\mathbf{r}}}^{(m)})$$

For the rest of today's session we will assume ignorability

◆□ → ◆□ → ◆ ■ → ◆ ■ → ○ Q ペ 11/32

A purely Bayesian version of MI under ignorability:

► Sample
$$\{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$$

- Create *M* completed datasets $\{(\mathbf{z}_r, \mathbf{z}_{\bar{r}}^{(m)})\}_{m=1}^M$
- Obtain posteriors using each completed dataset $p(\theta \mid \mathbf{z}_{r}, \mathbf{z}_{\bar{r}}^{(m)})$
- Combine individual posteriors

$$p(\theta \mid \mathbf{z}_{\mathbf{r}}) \approx \frac{1}{M} \sum_{m=1}^{M} p(\theta \mid \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\overline{\mathbf{r}}}^{(m)})$$

For the rest of today's session we will assume ignorability

A purely Bayesian version of MI under ignorability:

► Sample
$$\{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$$

- Create *M* completed datasets $\{(\mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)})\}_{m=1}^{M}$
- Obtain posteriors using each completed dataset $p(\theta \mid \mathbf{z}_r, \mathbf{z}_r^{(m)})$

Combine individual posteriors

$$p(\theta \mid \mathbf{z}_{\mathbf{r}}) \approx \frac{1}{M} \sum_{m=1}^{M} p(\theta \mid \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\overline{\mathbf{r}}}^{(m)})$$

For the rest of today's session we will assume ignorability

< □ > < ⑦ > < 言 > < 言 > こ > う Q (~ 11/32

A purely Bayesian version of MI under ignorability:

► Sample
$$\{\mathbf{z}_{\overline{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\overline{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$$

- Create *M* completed datasets $\{(\mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)})\}_{m=1}^{M}$
- Obtain posteriors using each completed dataset $p(\theta | \mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\mathbf{\bar{r}}}^{(m)})$
- Combine individual posteriors

$$p(\theta \mid \mathbf{z_r}) \approx \frac{1}{M} \sum_{m=1}^{M} p(\theta \mid \mathbf{z_r}, \mathbf{z_{\bar{r}}^{(m)}})$$

For the rest of today's session we will assume ignorability

A purely Bayesian version of MI under ignorability:

► Sample
$$\{\mathbf{z}_{\overline{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\overline{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$$

- Create *M* completed datasets $\{(\mathbf{z}_{\mathbf{r}}, \mathbf{z}_{\bar{\mathbf{r}}}^{(m)})\}_{m=1}^{M}$
- Obtain posteriors using each completed dataset $p(\theta \mid \mathbf{z}_{r}, \mathbf{z}_{r}^{(m)})$
- Combine individual posteriors

$$p(\theta \mid \mathbf{z_r}) \approx \frac{1}{M} \sum_{m=1}^{M} p(\theta \mid \mathbf{z_r}, \mathbf{z_{\bar{r}}^{(m)}})$$

For the rest of today's session we will assume ignorability

- A further approximation based on Bernstein-von Mises theorem
 - Heuristically, we say that asymptotically

$$p(\theta \mid \mathbf{z_r}) \approx N(\hat{ heta}_{\mathsf{MLE}}, \hat{V}[\hat{ heta}_{\mathsf{MLE}}])$$

Therefore, for large sample sizes, instead of averaging the individual posteriors we only need the posterior mean and covariance

$$\begin{split} \hat{\theta}_{\mathsf{MLE}} &\approx E(\theta \mid \mathbf{z}_{\mathsf{r}}) \\ &= E_{\mathsf{z}_{\overline{\mathsf{r}}}}[E(\theta \mid \mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\overline{\mathsf{r}}}) \mid \mathsf{z}_{\mathsf{r}}] \\ &\approx \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\overline{\mathsf{r}}}^{(m)}) \end{split}$$

$$\hat{V}[\hat{\theta}_{\mathsf{MLE}}] \approx V(\theta \mid \mathbf{z}_{\mathsf{r}})$$

$$= E_{z_{\mathsf{r}}}[V(\theta \mid \mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}) \mid \mathbf{z}_{\mathsf{r}}] + V_{z_{\mathsf{r}}}[E(\theta \mid \mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}) \mid \mathbf{z}_{\mathsf{r}}]$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)})] + \left(1 + \frac{1}{M}\right) \hat{V}_{z_{\mathsf{r}}}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)})]$$

- A further approximation based on Bernstein-von Mises theorem
 - Heuristically, we say that asymptotically

$$p(\theta \mid \mathbf{z_r}) \approx N(\hat{ heta}_{\mathsf{MLE}}, \hat{V}[\hat{ heta}_{\mathsf{MLE}}])$$

Therefore, for large sample sizes, instead of averaging the individual posteriors we only need the posterior mean and covariance

$$\hat{\theta}_{\mathsf{MLE}} \approx \boldsymbol{E}(\boldsymbol{\theta} \mid \mathbf{z}_{\mathsf{r}})$$

$$= E_{\mathsf{z}_{\mathsf{r}}}[E(\boldsymbol{\theta} \mid \mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}) \mid \mathbf{z}_{\mathsf{r}}]$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)})$$

$$\hat{V}[\hat{\theta}_{\mathsf{MLE}}] \approx V(\theta \mid \mathbf{z}_{\mathsf{r}})$$

$$= E_{z_{\mathsf{r}}}[V(\theta \mid \mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}) \mid \mathbf{z}_{\mathsf{r}}] + V_{z_{\mathsf{r}}}[E(\theta \mid \mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}) \mid \mathbf{z}_{\mathsf{r}}]$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)})] + \left(1 + \frac{1}{M}\right) \hat{V}_{z_{\mathsf{r}}}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)})]$$

- A further approximation based on Bernstein-von Mises theorem
 - Heuristically, we say that asymptotically

$$p(\theta \mid \mathbf{z_r}) pprox N(\hat{ heta}_{\mathsf{MLE}}, \hat{V}[\hat{ heta}_{\mathsf{MLE}}])$$

Therefore, for large sample sizes, instead of averaging the individual posteriors we only need the posterior mean and covariance

$$\hat{\theta}_{\mathsf{MLE}} \approx E(\theta \mid \mathbf{z}_{\mathsf{r}}) \\ = E_{\mathsf{z}_{\mathsf{r}}}[E(\theta \mid \mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\mathsf{\bar{r}}}) \mid \mathsf{z}_{\mathsf{r}}] \\ \approx \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\mathsf{r}}^{(m)})$$

$$\hat{V}[\hat{\theta}_{\mathsf{MLE}}] \approx V(\theta \mid \mathbf{z}_{\mathsf{r}})$$

$$= E_{z_{\mathsf{r}}}[V(\theta \mid \mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}) \mid \mathbf{z}_{\mathsf{r}}] + V_{z_{\mathsf{r}}}[E(\theta \mid \mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}) \mid \mathbf{z}_{\mathsf{r}}]$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{r}}^{(m)})] + \left(1 + \frac{1}{M}\right) \hat{V}_{z_{\mathsf{r}}}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\bar{\mathsf{r}}}^{(m)})]$$

- A further approximation based on Bernstein-von Mises theorem
 - Heuristically, we say that asymptotically

$$p(\theta \mid \mathbf{z_r}) pprox N(\hat{ heta}_{\mathsf{MLE}}, \hat{V}[\hat{ heta}_{\mathsf{MLE}}])$$

Therefore, for large sample sizes, instead of averaging the individual posteriors we only need the posterior mean and covariance

$$\begin{split} \hat{\theta}_{\mathsf{MLE}} &\approx E(\theta \mid \mathbf{z_r}) \\ &= E_{\mathsf{z_{\bar{r}}}}[E(\theta \mid \mathsf{z_r}, \mathsf{z_{\bar{r}}}) \mid \mathsf{z_r}] \\ &\approx \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathsf{MLE}}(\mathsf{z_r}, \mathsf{z_{\bar{r}}}^{(m)}) \end{split}$$

$$\begin{split} \hat{V}[\hat{\theta}_{\mathsf{MLE}}] &\approx V(\theta \mid \mathsf{z}_{\mathsf{r}}) \\ &= E_{\mathsf{z}_{\mathsf{r}}}[V(\theta \mid \mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\bar{\mathsf{r}}}) \mid \mathsf{z}_{\mathsf{r}}] + V_{\mathsf{z}_{\mathsf{r}}}[E(\theta \mid \mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\bar{\mathsf{r}}}) \mid \mathsf{z}_{\mathsf{r}}] \\ &\approx \frac{1}{M} \sum_{m=1}^{M} \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\bar{\mathsf{r}}}^{(m)})] + \left(1 + \frac{1}{M}\right) \hat{V}_{\mathsf{z}_{\mathsf{r}}}[\hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\bar{\mathsf{r}}}^{(m)})] \\ &\quad (\Box \models \langle \mathbf{0} \models \langle \mathbf{z} \models \langle$$

- A further approximation based on Bernstein-von Mises theorem
 - Heuristically, we say that asymptotically

$$p(\theta \mid \mathbf{z_r}) pprox N(\hat{ heta}_{\mathsf{MLE}}, \hat{V}[\hat{ heta}_{\mathsf{MLE}}])$$

Therefore, for large sample sizes, instead of averaging the individual posteriors we only need the posterior mean and covariance

$$\begin{split} \hat{\theta}_{\mathsf{MLE}} &\approx E(\theta \mid \mathbf{z_r}) \\ &= E_{\mathsf{z_{\bar{r}}}}[E(\theta \mid \mathsf{z_r}, \mathsf{z_{\bar{r}}}) \mid \mathsf{z_r}] \\ &\approx \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathsf{MLE}}(\mathsf{z_r}, \mathsf{z_{\bar{r}}}^{(m)}) \end{split}$$
Bayesian Derivation of MI under Ignorability

- A further approximation based on Bernstein-von Mises theorem
 - Heuristically, we say that asymptotically

$$p(\theta \mid \mathbf{z_r}) pprox N(\hat{ heta}_{\mathsf{MLE}}, \hat{V}[\hat{ heta}_{\mathsf{MLE}}])$$

Therefore, for large sample sizes, instead of averaging the individual posteriors we only need the posterior mean and covariance

$$\begin{split} \hat{\theta}_{\mathsf{MLE}} &\approx E(\theta \mid \mathbf{z}_{\mathsf{r}}) \\ &= E_{\mathsf{z}_{\bar{\mathsf{r}}}}[E(\theta \mid \mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\bar{\mathsf{r}}}) \mid \mathsf{z}_{\mathsf{r}}] \\ &\approx \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\bar{\mathsf{r}}}^{(m)}) \end{split}$$

$$\hat{\mathcal{V}}[\hat{\theta}_{\mathsf{MLE}}] \approx \mathcal{V}(\theta \mid \mathbf{z}_{\mathsf{r}}) \\ = E_{\mathsf{z}_{\mathsf{r}}}[\mathcal{V}(\theta \mid \mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{\bar{r}}}) \mid \mathbf{z}_{\mathsf{r}}] + V_{\mathsf{z}_{\mathsf{r}}}[E(\theta \mid \mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{\bar{r}}}) \mid \mathbf{z}_{\mathsf{r}}] \\ \approx \frac{1}{M} \sum_{m=1}^{M} \hat{\mathcal{V}}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{r}}^{(m)})] + \left(1 + \frac{1}{M}\right) \hat{\mathcal{V}}_{\mathsf{z}_{\mathsf{r}}}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{r}}^{(m)})]$$

Bayesian Derivation of MI under Ignorability

- A further approximation based on Bernstein-von Mises theorem
 - Heuristically, we say that asymptotically

$$p(\theta \mid \mathbf{z_r}) pprox N(\hat{ heta}_{\mathsf{MLE}}, \hat{V}[\hat{ heta}_{\mathsf{MLE}}])$$

Therefore, for large sample sizes, instead of averaging the individual posteriors we only need the posterior mean and covariance

$$\begin{split} \hat{\theta}_{\mathsf{MLE}} &\approx E(\theta \mid \mathbf{z}_{\mathsf{r}}) \\ &= E_{\mathsf{z}_{\bar{\mathsf{r}}}}[E(\theta \mid \mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\bar{\mathsf{r}}}) \mid \mathsf{z}_{\mathsf{r}}] \\ &\approx \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\bar{\mathsf{r}}}^{(m)}) \end{split}$$

$$\hat{V}[\hat{\theta}_{\mathsf{MLE}}] \approx V(\theta \mid \mathbf{z}_{\mathsf{r}})$$

$$= E_{\mathsf{z}_{\mathsf{f}}}[V(\theta \mid \mathbf{z}_{\mathsf{r}}, \mathbf{z}_{\mathsf{\bar{r}}}) \mid \mathsf{z}_{\mathsf{r}}] + V_{\mathsf{z}_{\mathsf{\bar{r}}}}[E(\theta \mid \mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\mathsf{\bar{r}}}) \mid \mathsf{z}_{\mathsf{r}}]$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\mathsf{\bar{r}}}^{(m)})] + \left(1 + \frac{1}{M}\right) \hat{V}_{\mathsf{z}_{\mathsf{\bar{r}}}}[\hat{\theta}_{\mathsf{MLE}}(\mathsf{z}_{\mathsf{r}}, \mathsf{z}_{\mathsf{\bar{r}}}^{(m)})]$$

Bayesian Derivation of MI under Ignorability

Where does $\left(1 + \frac{1}{M}\right)$ come from?

- Adjustment for finite number of imputations
- Derived under an extra set of assumptions (Section 3.3 of Rubin (1987))
- Negligible for a moderate number of imputations

Wait a second!

• What is $p(\mathbf{z}_{\bar{\mathbf{r}}} | \mathbf{z}_{\mathbf{r}})$ and how do we sample from it?

$$p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}}) = \int_{\theta} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}}, \theta) p(\theta \mid \mathbf{z}_{\mathbf{r}}) d\theta$$

14 / 32

So, to obtain a draw from conditional distribution $Z_{\overline{r}} \mid z_r$ we can

- Draw $\theta^{(m)}$ from $p(\theta \mid \mathbf{z_r})$
- Draw $\mathbf{z}_{\overline{\mathbf{r}}}^{(m)}$ from $p(\mathbf{z}_{\overline{\mathbf{r}}} | \mathbf{z}_{\mathbf{r}}, \theta^{(m)})$

Wait a second!

• What is $p(\mathbf{z}_{\bar{\mathbf{r}}} | \mathbf{z}_{\mathbf{r}})$ and how do we sample from it?

$$p(\mathbf{z}_{\overline{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}}) = \int_{\theta} p(\mathbf{z}_{\overline{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}}, \theta) p(\theta \mid \mathbf{z}_{\mathbf{r}}) d\theta$$

 \blacktriangleright So, to obtain a draw from conditional distribution $Z_{\bar{r}} \mid z_r$ we can

• Draw $\theta^{(m)}$ from $p(\theta \mid \mathbf{z}_r)$

• Draw
$$\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}$$
 from $p(\mathbf{z}_{\bar{\mathbf{r}}} | \mathbf{z}_{\mathbf{r}}, \theta^{(m)})$

Therefore, to approximate $p(\theta \mid \mathbf{z_r})$ via MI, part of what we need to do is

► Sample $\{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$ to create M completed datasets

▶ To obtain a draw $\mathbf{z}_{\overline{\mathbf{r}}}^{(m)}$, we need to

- Draw $\theta^{(m)}$ from $p(\theta \mid \mathbf{z_r})$
- Draw $\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}$ from $p(\mathbf{z}_{\bar{\mathbf{r}}} | \mathbf{z}_{\mathbf{r}}, \theta^{(m)})$

Confused anyone?

Therefore, to approximate $p(\theta \mid \mathbf{z_r})$ via MI, part of what we need to do is

(ロ) (部) (E) (E) (E) (000 (000))

► Sample $\{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$ to create M completed datasets

• To obtain a draw
$$\mathbf{z}_{\overline{\mathbf{r}}}^{(m)}$$
, we need to

• Draw
$$\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}$$
 from $p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}}, \theta^{(m)})$

Confused anyone?

Therefore, to approximate $p(\theta \mid \mathbf{z_r})$ via MI, part of what we need to do is

► Sample $\{\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}\}_{m=1}^{M} \stackrel{iid}{\sim} p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}})$ to create M completed datasets

• To obtain a draw
$$\mathbf{z}_{\overline{\mathbf{r}}}^{(m)}$$
, we need to

• Draw
$$\theta^{(m)}$$
 from $p(\theta \mid \mathbf{z_r})$

• Draw
$$\mathbf{z}_{\bar{\mathbf{r}}}^{(m)}$$
 from $p(\mathbf{z}_{\bar{\mathbf{r}}} \mid \mathbf{z}_{\mathbf{r}}, \theta^{(m)})$

Confused anyone?

- ▶ You need to sample from $p(\theta | \mathbf{z}_r)$ to approximate $p(\theta | \mathbf{z}_r)$ via MI
 - ► If you can directly work with $p(\theta | \mathbf{z}_r)$, then MI seems pointless (e.g., if you are doing the imputation and the analysis)
- Rubin's motivation for MI:
 - A statistical agency needs to publish a dataset with missingness
 - ► It instead publishes *M* completed datasets
 - Analysts run analyses on each completed dataset and combine results
 - Analysts don't have to worry about the missing data problem

- ▶ You need to sample from $p(\theta | \mathbf{z}_r)$ to approximate $p(\theta | \mathbf{z}_r)$ via MI
 - If you can directly work with $p(\theta | \mathbf{z}_r)$, then MI seems pointless (e.g., if you are doing the imputation and the analysis)
- Rubin's motivation for MI:
 - A statistical agency needs to publish a dataset with missingness
 - It instead publishes M completed datasets
 - Analysts run analyses on each completed dataset and combine results
 - Analysts don't have to worry about the missing data problem

Just a "tiny" detail:

- > Analysts don't usually use the same model used by the imputer!
- Models might be uncongenial

Outline

Proper Multiple Imputation Uncongeniality

Multivariate Imputation by Chained Equations

Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Xiao-Li Meng (1994, Statistical Science) described this issue:

Multiple imputations are based on an imputation model

Analysts use an *analysis procedure*

Imputation and analysis might be incompatible or uncongenial

Xiao-Li Meng (1994, Statistical Science) described this issue:

- Multiple imputations are based on an imputation model
- Analysts use an analysis procedure

Imputation and analysis might be incompatible or uncongenial

Xiao-Li Meng (1994, Statistical Science) described this issue:

- Multiple imputations are based on an imputation model
- Analysts use an analysis procedure
- Imputation and analysis might be incompatible or uncongenial

- From the analyst's point of view:
 - ► \mathcal{P}_{obs} : inferential procedure with *incomplete* data, e.g. derived from $L_{obs}(\theta \mid \mathbf{z}_{(r)})$ and $p(\theta)$, summarized by $\{\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)}), \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)})]\}$
 - ▶ \mathcal{P}_{com} : inferential procedure with *complete* data, e.g. derived from $L(\theta \mid z_{(r)}, z_{(\bar{r})})$ and $p(\theta)$, summarized by $\{\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)}, z_{(\bar{r})}), \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)}, z_{(\bar{r})})]\}$
- From the imputer's point of view:
 - Imputations are drawn from a conditional distribution g(z_r | z_r, A), where A corresponds to extra variables that might be available to the imputer but not to the analyst

- From the analyst's point of view:
 - ► \mathcal{P}_{obs} : inferential procedure with *incomplete* data, e.g. derived from $L_{obs}(\theta \mid \mathbf{z}_{(r)})$ and $p(\theta)$, summarized by $\{\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)}), \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)})]\}$
 - $\begin{array}{l} & \mathcal{P}_{com}: \text{ inferential procedure with } complete \text{ data, e.g. derived from } \\ & L(\theta \mid \mathbf{z}_{(r)}, \mathbf{z}_{(\overline{r})}) \text{ and } p(\theta), \text{ summarized by } \\ & \{\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)}, \mathbf{z}_{(\overline{r})}), \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)}, \mathbf{z}_{(\overline{r})})]\} \end{array}$
- From the imputer's point of view:
 - Imputations are drawn from a conditional distribution g(z_r | z_r, A), where A corresponds to extra variables that might be available to the imputer but not to the analyst

- From the analyst's point of view:
 - ► \mathcal{P}_{obs} : inferential procedure with *incomplete* data, e.g. derived from $L_{obs}(\theta \mid \mathbf{z}_{(r)})$ and $p(\theta)$, summarized by $\{\hat{\theta}_{MLE}(\mathbf{z}_{(r)}), \hat{V}[\hat{\theta}_{MLE}(\mathbf{z}_{(r)})]\}$
- From the imputer's point of view:
 - Imputations are drawn from a conditional distribution g(z_r | z_r, A), where A corresponds to extra variables that might be available to the imputer but not to the analyst

- Congeniality requires the existence of a Bayesian model (prior and likelihood) F such that
 - ► The posterior mean and variance of θ under \mathcal{F} given *incomplete* data are asymptotically the same as $\mathcal{P}_{obs} \equiv \{\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)}), \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)})]\}$
 - The posterior mean and variance of θ under F given complete data are asymptotically the same as $\mathcal{P}_{com} ≡ \{ \hat{\theta}_{MLE}(z_{(r)}, z_{(\bar{r})}), \hat{V}[\hat{\theta}_{MLE}(z_{(r)}, z_{(\bar{r})})] \}$
 - ► The posterior predictive density f(z_r | z_r) under F is identical to g(z_r | z_r, A) (from where imputations are drawn)

- Congeniality requires the existence of a Bayesian model (prior and likelihood) F such that
 - ► The posterior mean and variance of θ under F given *incomplete* data are asymptotically the same as P_{obs} ≡ {θ̂_{MLE}(z_(r)), V̂[θ̂_{MLE}(z_(r))]}
 - ► The posterior mean and variance of θ under \mathcal{F} given *complete* data are asymptotically the same as $\mathcal{P}_{com} \equiv \{\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)}, \mathbf{z}_{(\bar{r})}), \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)}, \mathbf{z}_{(\bar{r})})]\}$
 - ► The posterior predictive density f(z_r | z_r) under F is identical to g(z_r | z_r, A) (from where imputations are drawn)

- Congeniality requires the existence of a Bayesian model (prior and likelihood) F such that
 - The posterior mean and variance of θ under F given *incomplete* data are asymptotically the same as P_{obs} ≡ {θ̂_{MLE}(z_(r)), V̂[θ̂_{MLE}(z_(r))]}
 - The posterior mean and variance of θ under \mathcal{F} given *complete* data are asymptotically the same as $\mathcal{P}_{com} \equiv \{\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)}, \mathbf{z}_{(\bar{r})}), \hat{V}[\hat{\theta}_{\mathsf{MLE}}(\mathbf{z}_{(r)}, \mathbf{z}_{(\bar{r})})]\}$
 - The posterior predictive density $f(\mathbf{z}_{\bar{\mathbf{r}}} | \mathbf{z}_{\mathbf{r}})$ under \mathcal{F} is identical to $g(\mathbf{z}_{\bar{\mathbf{r}}} | \mathbf{z}_{\mathbf{r}}, A)$ (from where imputations are drawn)

Xie & Meng (2017, Statistica Sinica):

"When the imputation model class and the (embedded) analyst's model class differ, the behavior of Rubin's rules becomes very complicated, capable of producing inconsistent variance estimators, a matter that has received recurrent criticisms"

Confidence intervals might not be valid (less coverage than desired)

Xie & Meng (2017, Statistica Sinica):

"When the imputation model class and the (embedded) analyst's model class differ, the behavior of Rubin's rules becomes very complicated, capable of producing inconsistent variance estimators, a matter that has received recurrent criticisms"

Confidence intervals might not be valid (less coverage than desired)

Xie & Meng (2017, Statistica Sinica) conclude:

- Imputation model should be more general than analysis model to obtain valid confidence intervals from Rubin's rules
- "In general, uncongenality should be regarded as the rule rather than the exception, and a simple confidence valid procedure to combat any degree of uncongenality is to double Rubin's MI variance estimate"

Xie & Meng (2017, Statistica Sinica) conclude:

- Imputation model should be more general than analysis model to obtain valid confidence intervals from Rubin's rules
- "In general, uncongenality should be regarded as the rule rather than the exception, and a simple confidence valid procedure to combat any degree of uncongenality is to double Rubin's MI variance estimate"

Xie & Meng (2017, Statistica Sinica) conclude:

- Imputation model should be more general than analysis model to obtain valid confidence intervals from Rubin's rules
- "In general, uncongenality should be regarded as the rule rather than the exception, and a simple confidence valid procedure to combat any degree of uncongenality is to double Rubin's MI variance estimate"

Outline

Proper Multiple Imputation Uncongeniality

Multivariate Imputation by Chained Equations

Summary

<ロ > < 部 > < 書 > < 書 > 差 の Q (~ 24/32

Modeling Multivariate Distributions

- The imputation part of multiple imputation requires a model for the joint distribution of the study variables
- Which models are common for multivariate distributions?
 - Multivariate normal for continuous variables
 - Multinomial for categorical variables
- What if we have a mix of variable types?
 - Counts
 - Continuous, some nonnegative, some skewed
 - Categorical, some nominal, some ordinal
 - Mixed type, perhaps zero inflated
- ▶ Flexible models for variables of mixed type *do* exist, but they are a current area of research (e.g., Murray & Reiter, JASA 2016)

Modeling Multivariate Distributions

- The imputation part of multiple imputation requires a model for the joint distribution of the study variables
- Which models are common for multivariate distributions?
 - Multivariate normal for continuous variables
 - Multinomial for categorical variables
- What if we have a mix of variable types?
 - Counts
 - Continuous, some nonnegative, some skewed
 - Categorical, some nominal, some ordinal
 - Mixed type, perhaps zero inflated

 Flexible models for variables of mixed type do exist, but they are a current area of research (e.g., Murray & Reiter, JASA 2016)

Modeling Multivariate Distributions

- The imputation part of multiple imputation requires a model for the joint distribution of the study variables
- Which models are common for multivariate distributions?
 - Multivariate normal for continuous variables
 - Multinomial for categorical variables
- What if we have a mix of variable types?
 - Counts
 - Continuous, some nonnegative, some skewed
 - Categorical, some nominal, some ordinal
 - Mixed type, perhaps zero inflated
- Flexible models for variables of mixed type *do* exist, but they are a current area of research (e.g., Murray & Reiter, JASA 2016)

Modeling Conditional Distributions

On the other hand, we know a lot about, and have a lot of software for, modeling response variables of different types in a regression context

- Continuous response: linear regression
- Binary response: logistic regression
- In general: generalized linear models

Imputing One Variable

Say $Z = (Y_1, \ldots, Y_K)$, and only Y_1 is subject to missingness

• We only need to model $Y_1 \mid Y_2, \ldots, Y_K$, say using $p(y_1 \mid y_2, \ldots, y_K, \theta)$

• To impute missing Y_1 's via multiple imputation, we need to

- Draw $\theta^{(m)}$ from $p(\theta \mid \mathbf{z_r}) \propto p(\theta) \prod_{i:r_i=1} p(y_{i1} \mid y_{i2}, \dots, y_{iK}, \theta)$
- Draw $y_{i1}^{(m)}$ from $p(y_1 \mid y_{i2}, \dots, y_{iK}, \theta^{(m)})$ if y_{i1} is missing

Imputing One Variable

Say $Z = (Y_1, \ldots, Y_K)$, and only Y_1 is subject to missingness

• We only need to model $Y_1 \mid Y_2, \ldots, Y_K$, say using

 $p(y_1 \mid y_2, \ldots, y_K, \theta)$

• To impute missing Y_1 's via multiple imputation, we need to

- Draw $\theta^{(m)}$ from $p(\theta \mid \mathbf{z_r}) \propto p(\theta) \prod_{i:r_i=1} p(y_{i1} \mid y_{i2}, \dots, y_{iK}, \theta)$
- Draw $y_{i1}^{(m)}$ from $p(y_1 | y_{i2}, \ldots, y_{iK}, \theta^{(m)})$ if y_{i1} is missing

Multivariate Imputation by Chained Equations

Multivariate Imputation by Chained Equations (MICE) (van Buuren 2007, van Buuren and Groothuis-Oudshoorn 2011^2) is an ad-hoc multiple imputation procedure that builds on the previous idea

► If each Y₁,..., Y_K is subject to missingness, we can posit K different regression models

 $p_{1}(y_{1} \mid y_{-1}, \theta_{1})$ $p_{2}(y_{2} \mid y_{-2}, \theta_{2})$ \vdots $p_{K}(y_{K} \mid y_{-K}, \theta_{K})$

• θ_k : parameters of the *k*th conditional distribution

• $y_{-k} = (y_1, \dots, y_{k-1}, y_{k+1}, \dots, y_K)$

Key idea: use these models to sequentially impute, one variable at a time. Repeat this over a number of iterations

Multivariate Imputation by Chained Equations

Multivariate Imputation by Chained Equations (MICE) (van Buuren 2007, van Buuren and Groothuis-Oudshoorn 2011^2) is an ad-hoc multiple imputation procedure that builds on the previous idea

► If each Y₁,..., Y_K is subject to missingness, we can posit K different regression models

```
p_{1}(y_{1} \mid y_{-1}, \theta_{1})
p_{2}(y_{2} \mid y_{-2}, \theta_{2})
\vdots
p_{K}(y_{K} \mid y_{-K}, \theta_{K})
```

- θ_k : parameters of the *k*th conditional distribution
- $y_{-k} = (y_1, \ldots, y_{k-1}, y_{k+1}, \ldots, y_K)$
- Key idea: use these models to sequentially impute, one variable at a time. Repeat this over a number of iterations

²https://www.jstatsoft.org/article/view/v045i03/v45i03.pdf + < = > = -> <

Multivariate Imputation by Chained Equations

Multivariate Imputation by Chained Equations (MICE) (van Buuren 2007, van Buuren and Groothuis-Oudshoorn 2011^2) is an ad-hoc multiple imputation procedure that builds on the previous idea

► If each Y₁,..., Y_K is subject to missingness, we can posit K different regression models

```
p_{1}(y_{1} \mid y_{-1}, \theta_{1})
p_{2}(y_{2} \mid y_{-2}, \theta_{2})
\vdots
p_{K}(y_{K} \mid y_{-K}, \theta_{K})
```

- θ_k : parameters of the *k*th conditional distribution
- $y_{-k} = (y_1, \ldots, y_{k-1}, y_{k+1}, \ldots, y_K)$
- Key idea: use these models to sequentially impute, one variable at a time. Repeat this over a number of iterations

²https://www.jstatsoft.org/article/view/v045i03/v45i03.pdf= > < = > = < ? < ?
The MICE algorithm:

- Initialize the algorithm by randomly imputing the missing values of each variable/column by observed values of that variable/column. Denote this initial completed data as y₁⁽⁰⁾,..., y_K⁽⁰⁾
- ▶ Run a pseudo Gibbs/Data Augmentation sampler, with *t*th iteration: $\theta_1^{(t)} \sim p_1(\theta_1 \mid \mathbf{y}_{1(r_1)}, \mathbf{y}_2^{(t-1)}, \dots, \mathbf{y}_K^{(t-1)}) \propto p_1(\theta_1) \prod_{i:r_1 = 1} p_1(y_{i1} \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_1)$ $y_{i1}^{(t)} \sim p_1(y_1 \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_1^{(t)})$, for all missing y_{i1} \vdots $\theta_K^{(t)} \sim p_K(\theta_K \mid \mathbf{y}_{K(r_K)}, \mathbf{y}_1^{(t)}, \dots, \mathbf{y}_{K-1}^{(t)}) \propto p_K(\theta_K) \prod_{i:r_{iK} = 1} p_K(y_{iK} \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_K)$ $y_{iK}^{(t)} \sim p_K(y_K \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_K^{(t)})$, for all missing y_{iK}
- Iterate for a number of times

The MICE algorithm:

- Initialize the algorithm by randomly imputing the missing values of each variable/column by observed values of that variable/column. Denote this initial completed data as y₁⁽⁰⁾,..., y_K⁽⁰⁾
- ► Run a pseudo Gibbs/Data Augmentation sampler, with *t*th iteration: $\theta_{1}^{(t)} \sim p_{1}(\theta_{1} | \mathbf{y}_{1(r_{1})}, \mathbf{y}_{2}^{(t-1)}, \dots, \mathbf{y}_{K}^{(t-1)}) \propto p_{1}(\theta_{1}) \prod_{i:r_{i1}=1} p_{1}(y_{i1} | y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_{1})$ $y_{i1}^{(t)} \sim p_{1}(y_{1} | y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_{1}^{(t)}), \text{ for all missing } y_{i1}$ \vdots $\theta_{K}^{(t)} \sim p_{K}(\theta_{K} | \mathbf{y}_{K(r_{K})}, \mathbf{y}_{1}^{(t)}, \dots, \mathbf{y}_{K-1}^{(t)}) \propto p_{K}(\theta_{K}) \prod_{i:r_{iR}=1} p_{K}(y_{iK} | y_{i1}^{(t)}, \dots, y_{iK-1}^{(t)}, \theta_{K})$ $y_{iK}^{(t)} \sim p_{K}(y_{K} | y_{i1}^{(t)}, \dots, y_{iK-1}^{(t)}, \theta_{K}^{(t)}), \text{ for all missing } y_{iK}$
- Iterate for a number of times

The MICE algorithm:

- Initialize the algorithm by randomly imputing the missing values of each variable/column by observed values of that variable/column. Denote this initial completed data as y₁⁽⁰⁾,..., y_K⁽⁰⁾
- ► Run a pseudo Gibbs/Data Augmentation sampler, with *t*th iteration: $\theta_1^{(t)} \sim p_1(\theta_1 \mid \mathbf{y}_{1(r_1)}, \mathbf{y}_2^{(t-1)}, \dots, \mathbf{y}_K^{(t-1)}) \propto p_1(\theta_1) \prod_{i:r_{i1}=1} p_1(y_{i1} \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_1)$ $y_{i1}^{(t)} \sim p_1(y_1 \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_1^{(t)})$, for all missing y_{i1} \vdots $\theta_K^{(t)} \sim p_K(\theta_K \mid \mathbf{y}_{K(r_K)}, \mathbf{y}_1^{(t)}, \dots, \mathbf{y}_{K-1}^{(t)}) \propto p_K(\theta_K) \prod_{i:r_{iK}=1} p_K(y_{iK} \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_K)$ $y_{iK}^{(t)} \sim p_K(y_K \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_K^{(t)})$, for all missing y_{iK}
- Iterate for a number of times

The MICE algorithm:

- Initialize the algorithm by randomly imputing the missing values of each variable/column by observed values of that variable/column. Denote this initial completed data as y₁⁽⁰⁾,..., y_K⁽⁰⁾
- ► Run a pseudo Gibbs/Data Augmentation sampler, with *t*th iteration: $\theta_1^{(t)} \sim p_1(\theta_1 \mid \mathbf{y}_{1(r_1)}, \mathbf{y}_2^{(t-1)}, \dots, \mathbf{y}_K^{(t-1)}) \propto p_1(\theta_1) \prod_{i:r_{i1}=1} p_1(y_{i1} \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_1)$ $y_{i1}^{(t)} \sim p_1(y_1 \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_1^{(t)})$, for all missing y_{i1} : $\theta_K^{(t)} \sim p_K(\theta_K \mid \mathbf{y}_{K(r_K)}, \mathbf{y}_1^{(t)}, \dots, \mathbf{y}_{K-1}^{(t)}) \propto p_K(\theta_K) \prod_{i:r_{iK}=1} p_K(y_{iK} \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_K)$ $y_{iK}^{(t)} \sim p_K(y_K \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_K^{(t)})$, for all missing y_{iK}

The MICE algorithm:

- Initialize the algorithm by randomly imputing the missing values of each variable/column by observed values of that variable/column. Denote this initial completed data as y₁⁽⁰⁾,..., y_K⁽⁰⁾
- ► Run a pseudo Gibbs/Data Augmentation sampler, with *t*th iteration: $\theta_1^{(t)} \sim p_1(\theta_1 \mid \mathbf{y}_{1(r_1)}, \mathbf{y}_2^{(t-1)}, \dots, \mathbf{y}_K^{(t-1)}) \propto p_1(\theta_1) \prod_{i:r_{i1}=1} p_1(y_{i1} \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_1)$ $y_{i1}^{(t)} \sim p_1(y_1 \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_1^{(t)})$, for all missing y_{i1} \vdots $\theta_K^{(t)} \sim p_K(\theta_K \mid \mathbf{y}_{K(r_K)}, \mathbf{y}_1^{(t)}, \dots, \mathbf{y}_{K-1}^{(t)}) \propto p_K(\theta_K) \prod_{i:r_{iK}=1} p_K(y_{iK} \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_K)$ $y_{iK}^{(t)} \sim p_K(y_K \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_K^{(t)})$, for all missing y_{iK}

The MICE algorithm:

- Initialize the algorithm by randomly imputing the missing values of each variable/column by observed values of that variable/column.
 Denote this initial completed data as y₁⁽⁰⁾,..., y_K⁽⁰⁾
- ► Run a pseudo Gibbs/Data Augmentation sampler, with *t*th iteration: $\theta_1^{(t)} \sim p_1(\theta_1 \mid \mathbf{y}_{1(r_1)}, \mathbf{y}_2^{(t-1)}, \dots, \mathbf{y}_K^{(t-1)}) \propto p_1(\theta_1) \prod_{i:r_{i1}=1} p_1(y_{i1} \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_1)$ $y_{i1}^{(t)} \sim p_1(y_1 \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_1^{(t)})$, for all missing y_{i1} : (t) = (t) = (t) = (t) = (t)

$$\theta_{K}^{(t)} \sim p_{K}(\theta_{K} \mid \mathbf{y}_{K(\mathbf{r}_{K})}, \mathbf{y}_{1}^{(t)}, \dots, \mathbf{y}_{K-1}^{(t)}) \propto p_{K}(\theta_{K}) \prod_{i:r_{iK}=1} p_{K}(y_{iK} \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_{K})$$
$$y_{iK}^{(t)} \sim p_{K}(y_{K} \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_{K}^{(t)}), \text{ for all missing } y_{iK}$$

The MICE algorithm:

- Initialize the algorithm by randomly imputing the missing values of each variable/column by observed values of that variable/column. Denote this initial completed data as y₁⁽⁰⁾,..., y_K⁽⁰⁾
- Run a pseudo Gibbs/Data Augmentation sampler, with tth iteration:

$$\begin{split} \theta_{1}^{(t)} &\sim p_{1}(\theta_{1} \mid \mathbf{y}_{1(r_{1})}, \mathbf{y}_{2}^{(t-1)}, \dots, \mathbf{y}_{K}^{(t-1)}) \propto p_{1}(\theta_{1}) \prod_{i:r_{i1}=1} p_{1}(y_{i1} \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_{1}) \\ y_{i1}^{(t)} &\sim p_{1}(y_{1} \mid y_{i2}^{(t-1)}, \dots, y_{iK}^{(t-1)}, \theta_{1}^{(t)}), \text{ for all missing } y_{i1} \\ \vdots \\ \theta_{K}^{(t)} &\sim p_{K}(\theta_{K} \mid \mathbf{y}_{K(r_{K})}, \mathbf{y}_{1}^{(t)}, \dots, \mathbf{y}_{K-1}^{(t)}) \propto p_{K}(\theta_{K}) \prod_{i:r_{iK}=1} p_{K}(y_{iK} \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_{K})) \\ y_{iK}^{(t)} &\sim p_{K}(y_{K} \mid y_{i1}^{(t)}, \dots, y_{i,K-1}^{(t)}, \theta_{K}^{(t)}), \text{ for all missing } y_{iK} \end{split}$$

Comments:

- MICE is implemented in R, in the package mice
- Authors of mice suggest running the algorithm for 10 to 20 iterations
- mice package gives you m imputed datasets from m runs of the previous algorithm
- ▶ The idea is to use Rubin's combining rules with these *m* datasets

Caveats:

- Lack of theoretical study of this method, although incredibly popular!
- In general, the K conditional models will not be compatible, that is, there might not exist a joint distribution with such conditionals!

Comments:

- MICE is implemented in R, in the package mice
- Authors of mice suggest running the algorithm for 10 to 20 iterations
- mice package gives you m imputed datasets from m runs of the previous algorithm
- ▶ The idea is to use Rubin's combining rules with these *m* datasets

Caveats:

- Lack of theoretical study of this method, although incredibly popular!
- ▶ In general, the K conditional models will not be compatible, that is, there might not exist a joint distribution with such conditionals!

Outline

Proper Multiple Imputation Uncongeniality

Multivariate Imputation by Chained Equations

Summary

◆□ → < 部 → < 差 → < 差 → 差 → 2 → ○ < (~ 31/32

Summary

Main take-aways from today's lecture:

- Multiple Imputation:
 - Monte Carlo approximation of proper Bayesian procedure
 - Designed in the context of a statistical agency that needs to release complete datasets
 - Goal is to account for imputation uncertainty
 - Uncongeniality generally leads to invalidity of inferences based on Rubin's combining rules
 - MICE is a practical implementation of multiple imputation that builds on Gibbs sampling ideas, but lacks theoretical guarantees

<ロ> (四) (四) (三) (三) (三) (三)

Next lecture:

► R session 3

Summary

Main take-aways from today's lecture:

- Multiple Imputation:
 - Monte Carlo approximation of proper Bayesian procedure
 - Designed in the context of a statistical agency that needs to release complete datasets
 - Goal is to account for imputation uncertainty
 - Uncongeniality generally leads to invalidity of inferences based on Rubin's combining rules
 - MICE is a practical implementation of multiple imputation that builds on Gibbs sampling ideas, but lacks theoretical guarantees

<ロ> (四) (四) (三) (三) (三) (三)

Next lecture:

R session 3