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Previous Lectures

» Introduction to Bayesian inference

» Gibbs sampling from posterior distributions

> General setup for Bayesian inference with missing data

> Ignorability for Bayesian inference (Definition 5.12 in Daniels &

Hogan, 2008):
» MAR
> Separability: the full-data parameter ¢ can be decomposed as
¥ = (0,1), where 0 indexes the study-variables model and 1 indexes

the response mechanism
> 0 1l 1) a priori

» Data augmentation to handle missing data in Bayesian inference

¥



Today's Lecture

Different flavors of multiple imputation

» Proper multiple imputation

» Multiple imputation by chained equations



Outline

Proper Multiple Imputation



Multiple Imputation

Single imputation is appealing because of its simplicity, but we shouldn’t
treat the imputed data as if it was all observed data

» Remember: single imputation leads to overconfidence in results,
underestimation of standard errors

> Idea: maybe we can account for the extra uncertainty coming from
the fact that we are imputing the missing data
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Single imputation is appealing because of its simplicity, but we shouldn’t
treat the imputed data as if it was all observed data

» Remember: single imputation leads to overconfidence in results,
underestimation of standard errors

> Idea: maybe we can account for the extra uncertainty coming from
the fact that we are imputing the missing data

Rubin (1987, Multiple Imputation for Nonresponse in Surveys, Wiley)
proposed:

» For each individual, randomly impute the missing values M times to
create M completed datasets

» Run the analysis of interest on each of these M completed datasets

» Combine the results from the M analyses
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Proper Multiple Imputation under Ignorability

» For each individual, randomly impute the missing values M times to

create M completed datasets

» Sample {Z;m)}l\nﬂﬂ i~ p(zF | zr)

> Create M completed datasets {(z,,zgm))},'\,/,’zl
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Proper Multiple Imputation under Ignorability

» For each individual, randomly impute the missing values M times to

create M completed datasets
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» For each individual, randomly impute the missing values M times to

create M completed datasets
iid

> Sample {Z{"}1y % p(zr | z)
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Proper Multiple Imputation under Ignorability

» For each individual, randomly impute the missing values M times to

create M completed datasets
iid

> Sample {Z{"}1y % p(zr | z)

» Create M completed datasets {(z,,z{™)}"_,

> Run the analysis of interest on each of these M completed datasets

{ Ouie(z, 2™, Vbie(ze, 2™)) 1M,

» Combine the results of the M analyses
1 M
o =, > duie(z, 2™),
m=1

M

V(0M| 7” Z [QMLE(ZHZ‘ )] +

m=1

( )le

Zém)) — Owl[OmLe(zr, ng)) —ow]”

6
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Multiple Imputation

What's the justification for this procedure?

» MI can be justified from a Bayesian point of view

» Actual practice of Ml is an approximation of the Bayesian procedure



Bayesian Derivation of Multiple Imputation

Recall that, given a prior p(f, ), Bayesian inferences are based on the
posterior distribution

p(0. ) [z p(r|z,6)p(z | 0) dz:

P(e, ¢ | r, Zr) = p(r, Zr)




Bayesian Derivation of Multiple Imputation

p(0:9) [z, p(r|z,0)p(z | 0) dz
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Bayesian Derivation of Multiple Imputation

o0, v.20) = p(0,9) [, p(p(r,z,rsz;)p( | ) dzs
:/ P(0,9)p(r | 2, 9)p(z | 0)
z p(r,zr)
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Bayesian Derivation of Multiple Imputation

D06 v.22) = p(0,9) [, p( o Zr))/J(ZIH) dzs
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Bayesian Derivation of Multiple Imputation

0, : r|z Z 0 dZF
o(0,6 | r.20) = ¢)fz'p(p(r,zj§)p( 10)

[ p0,¢)p(r |2z ¢)p(z | 0)
/ p(rzr) d

Zy
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Bayesian Derivation of Multiple Imputation

A purely Bayesian version of M| (without assuming ignorability):

> Sample {Z™}M_ % p(z | r,2,)
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Bayesian Derivation of Multiple Imputation

A purely Bayesian version of M| (without assuming ignorability):

> Sample {Z™}M_ % p(z | r,2,)

M
m=1

» Create M completed datasets {(r,zr,zém))

» Obtain posteriors using each completed dataset p(0, ¢ | r, z,,zgm))

» Combine individual posteriors

M
pO.0 v 2)~ s D p(0.6 | 1,2 2™
m:l

“In a nutshell, Rubin’s Ml is simply a size m Monte Carlo simulation”
(Xie & Meng, 2017, Statistica Sinica)?

http://dx.doi.org/10.5705/ss.2014.067
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Bayesian Derivation of M| under Ignorability
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» Sample {zém)}’\mﬂzl “ p(z7 | z)
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Bayesian Derivation of M| under Ignorability

A purely Bayesian version of MI under ignorability:

> Sample {Z™W_ % p(z | z,)

> Create M completed datasets {(z,, 2™ )}"_,
» Obtain posteriors using each completed dataset p(@ | z,, zém))

» Combine individual posteriors

LM
p(f]z)~ — Zp@\zr,z-

m:l

For the rest of today's session we will assume ignorability
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Bayesian Derivation of M| under Ignorability
A further approximation based on Bernstein—von Mises theorem
» Heuristically, we say that asymptotically

p(0 | z:) ~ N(Owie, V[0uLe])

» Therefore, for large sample sizes, instead of averaging the individual
posteriors we only need the posterior mean and covariance
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Bayesian Derivation of M| under Ignorability
A further approximation based on Bernstein—von Mises theorem
» Heuristically, we say that asymptotically

p(0 | z:) ~ N(Owie, V[0uLe])

» Therefore, for large sample sizes, instead of averaging the individual
posteriors we only need the posterior mean and covariance

Omie ~ E(0 | z/)
= E,[E(0 | 2, z) | 2]

1 M
~ W > Duie(zr, 2™)
m=1
VIAwie] = V(0 | z,)
= E,[V(0 |z, z7) | 2] + V4 [E(0 | 21, 2¢) | 2]

M
1 o m 1N\ ~ 4 .
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Bayesian Derivation of M| under Ignorability

Where does (1 + ;) come from?
» Adjustment for finite number of imputations

» Derived under an extra set of assumptions (Section 3.3 of Rubin
(1987))

> Negligible for a moderate number of imputations

13/32



Comments on Multiple Imputation

Wait a second!

» What is p(z7 | z;) and how do we sample from it?
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Comments on Multiple Imputation

Wait a second!

» What is p(z7 | z;) and how do we sample from it?

plar | 2) = [ bl | 20.0)p(0 | 2)d0

> So, to obtain a draw from conditional distribution Zz | z, we can
» Draw 6™ from p(6 | z/)

» Draw z\™ from p(z | z,,6'™)

14 /32



Comments on Multiple Imputation

Therefore, to approximate p(6 | z,) via MI, part of what we need to do is
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Comments on Multiple Imputation

Therefore, to approximate p(6 | z,) via MI, part of what we need to do is

id
> Sample {z§"’) M_ % p(zs | z/) to create M completed datasets

(m)

» To obtain a draw z; ’, we need to

» Draw 0™ from p(6 | z/)
» Draw z{™ from p(zi |z, 0(™)

T

Confused anyone?

15 /32



Comments on Multiple Imputation

> You need to sample from p(0 | z,) to approximate p(d | z,) via Ml

> If you can directly work with p(@ | z,), then MI seems pointless (e.g.,
if you are doing the imputation and the analysis)

16 /32



Comments on Multiple Imputation

> You need to sample from p(0 | z,) to approximate p(d | z,) via Ml

> If you can directly work with p(@ | z,), then MI seems pointless (e.g.,
if you are doing the imputation and the analysis)

» Rubin’s motivation for MI:
> A statistical agency needs to publish a dataset with missingness
> |t instead publishes M completed datasets

> Analysts run analyses on each completed dataset and combine
results

> Analysts don't have to worry about the missing data problem

16
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Comments on Multiple Imputation

Just a “tiny” detail:
» Analysts don't usually use the same model used by the imputer!

» Models might be uncongenial

17 /32



Outline

Proper Multiple Imputation
Uncongeniality
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Uncongeniality

Xiao-Li Meng (1994, Statistical Science) described this issue:

» Multiple imputations are based on an imputation model
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Uncongeniality

Xiao-Li Meng (1994, Statistical Science) described this issue:
» Multiple imputations are based on an imputation model
» Analysts use an analysis procedure

» Imputation and analysis might be incompatible or uncongenial

19/32



Uncongeniality

Meng (1994):

> From the analyst’s point of view:

> Pops: inferential procedure with incomplete data, e.g. derived from
Lobs(g | Z(r)) and p(9), summarized by {09|\/||_E(Z(,,))7 V[HMLE(Z(,.))]}
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Uncongeniality

Meng (1994):

> From the analyst’s point of view:

> Pops: inferential procedure with incomplete data, e.g. derived from
Lobs(8 | 2(y) and p(6), summarized by {Ouie(z()), V[Owie(ze)]}

> Peom: inferential procedure with complete data, e.g. derived from
L(0 | z¢),z) and p(#), summarized by

{GMLE( Z(r),Z ) V[9MLE(Z F))]}
» From the imputer's point of view:
> Imputations are drawn from a conditional distribution g(zz | z, A),

where A corresponds to extra variables that might be available to the
imputer but not to the analyst



Uncongeniality

Meng (1994):

» Congeniality requires the existence of a Bayesian model (prior and
likelihood) F such that

> The posterior mean and variance of 6 under F given incomplete data
are asymptotically the same as Pops = {OmLe(Z(r)), V[OMmLe(z(r))]}
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» Congeniality requires the existence of a Bayesian model (prior and
likelihood) F such that

> The posterior mean and variance of 6 under F given incomplete data
are asymptotically the same as Pops = {OmLe(Z(r)), V[OMmLe(z(r))]}

» The posterior mean and variance of 6 under F given complete data
are asymptotically the same as
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Uncongeniality

Meng (1994):

» Congeniality requires the existence of a Bayesian model (prior and
likelihood) F such that

> The posterior mean and variance of 6 under F given incomplete data
are asymptotically the same as Pops = {OmLe(Z(r)), V[OMmLe(z(r))]}

» The posterior mean and variance of 6 under F given complete data
are asymptotically the same as
Peom = {OmLe(2(r), 27))s V[OMLE(Z(r), 2]}

> The posterior predictive density f(zf | z:) under F is identical to
g(z¢ | z+, A) (from where imputations are drawn)

21/32



Uncongeniality

Xie & Meng (2017, Statistica Sinica):

“When the imputation model class and the (embedded) analyst's model
class differ, the behavior of Rubin’s rules becomes very complicated,

capable of producing inconsistent variance estimators, a matter that has
received recurrent criticisms'
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Xie & Meng (2017, Statistica Sinica):

“When the imputation model class and the (embedded) analyst's model
class differ, the behavior of Rubin’s rules becomes very complicated,

capable of producing inconsistent variance estimators, a matter that has
received recurrent criticisms'

» Confidence intervals might not be valid (less coverage than desired)
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Uncongeniality

Xie & Meng (2017, Statistica Sinica) conclude:

» Imputation model should be more general than analysis model to
obtain valid confidence intervals from Rubin’s rules

> “In general, uncongenality should be regarded as the rule rather than
the exception, and a simple confidence valid procedure to combat
any degree of uncongenality is to double Rubin’s Ml variance
estimate’



Outline

Multivariate Imputation by Chained Equations
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Modeling Multivariate Distributions

» The imputation part of multiple imputation requires a model for the
joint distribution of the study variables

» Which models are common for multivariate distributions?

» Multivariate normal for continuous variables
> Multinomial for categorical variables
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Modeling Multivariate Distributions

» The imputation part of multiple imputation requires a model for the
joint distribution of the study variables

» Which models are common for multivariate distributions?

» Multivariate normal for continuous variables
> Multinomial for categorical variables

» What if we have a mix of variable types?
» Counts
» Continuous, some nonnegative, some skewed
» Categorical, some nominal, some ordinal
> Mixed type, perhaps zero inflated

» Flexible models for variables of mixed type do exist, but they are a
current area of research (e.g., Murray & Reiter, JASA 2016)



Modeling Conditional Distributions

On the other hand, we know a lot about, and have a lot of software for,
modeling response variables of different types in a regression context

» Continuous response: linear regression
» Binary response: logistic regression

» In general: generalized linear models

26 /32



Imputing One Variable

Say Z =(Y1,..., Yk), and only Y] is subject to missingness

» We only need to model Y; | Ya,..., Yk, say using
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Imputing One Variable

Say Z =(Y1,..., Yk), and only Y] is subject to missingness

» We only need to model Y; | Ya,..., Yk, say using

p(y1|y27"'a.yK79)

» To impute missing Y7's via multiple imputation, we need to

» Draw 0™ from p(0 | z) x p(6) [Li, Py | yiz, - -, yiK, 0)

» Draw y,.(lm) from p(y1 | yiz, - . ., yix, 0(™) if yi1 is missing



Multivariate Imputation by Chained Equations

Multivariate Imputation by Chained Equations (MICE) (van Buuren
2007, van Buuren and Groothuis-Oudshoorn 20112) is an ad-hoc multiple
imputation procedure that builds on the previous idea

’https://www.jstatsoft.org/article/view/v045103/v45103. pdf
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Multivariate Imputation by Chained Equations

Multivariate Imputation by Chained Equations (MICE) (van Buuren
2007, van Buuren and Groothuis-Oudshoorn 20112) is an ad-hoc multiple
imputation procedure that builds on the previous idea

» If each Yi,..., Yk is subject to missingness, we can posit K
different regression models

pi(ya | y=1,61)
Pz()/2 | }/—2792)

px(vk | y—k,0k)

> 0. parameters of the kth conditional distribution

> Yk ::(yqa-~'ayk—17y%+1a""yK)
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Multivariate Imputation by Chained Equations

Multivariate Imputation by Chained Equations (MICE) (van Buuren
2007, van Buuren and Groothuis-Oudshoorn 20112) is an ad-hoc multiple
imputation procedure that builds on the previous idea

» If each Yi,..., Yk is subject to missingness, we can posit K
different regression models

pi(ya | y=1,61)
Pz()/2 | }/—2792)

px(vk | y—k,0k)

> 0. parameters of the kth conditional distribution

> Yok = (V1o Yh—15 Vit 1o -+ YK)
> Key idea: use these models to sequentially impute, one variable at a
time. Repeat this over a number of iterations

’https://www.jstatsoft.org/article/view/v045103/v45103. pdf
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Multivariate Imputation by Chained Equations
The MICE algorithm:

> Initialize the algorithm by randomly imputing the missing values of

each variable/column by observed values of that variable/column.

Denote this initial completed data as y§°), . ,y&?)
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yl.(lt) ~p1(yi | yigfl), .. ,yf(,zfl),th)), for all missing yi1
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> lterate for a number of times



Multivariate Imputation by Chained Equations

Comments:
» MICE is implemented in R, in the package mice

> Authors of mice suggest running the algorithm for 10 to 20
iterations

> mice package gives you m imputed datasets from m runs of the
previous algorithm

» The idea is to use Rubin's combining rules with these m datasets



Multivariate Imputation by Chained Equations

Comments:
» MICE is implemented in R, in the package mice

> Authors of mice suggest running the algorithm for 10 to 20
iterations

> mice package gives you m imputed datasets from m runs of the
previous algorithm

» The idea is to use Rubin's combining rules with these m datasets

Caveats:

» Lack of theoretical study of this method, although incredibly
popular!

> In general, the K conditional models will not be compatible, that is,

there might not exist a joint distribution with such conditionals!
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Summary

Main take-aways from today's lecture:

» Multiple Imputation:

>

>

Monte Carlo approximation of proper Bayesian procedure

Designed in the context of a statistical agency that needs to release
complete datasets

Goal is to account for imputation uncertainty

Uncongeniality generally leads to invalidity of inferences based on
Rubin’s combining rules

MICE is a practical implementation of multiple imputation that
builds on Gibbs sampling ideas, but lacks theoretical guarantees
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Next lecture:

» R session 3
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