Statistical Methods for Analysis with Missing Data

Lecture 9: Gibbs sampling, ignorability under Bayesian inference, data augmentation

Mauricio Sadinle

Department of Biostatistics
W University of WASHINGTON

Previous Lecture

Introduction to Bayesian inference:

- Alternative framework for deriving inferences from data
- Philosophical motivation: inclusion of prior belief or knowledge, uncertainty quantification in terms of distributions for parameters
- Practical motivation: convenient in some problems, might lead to good frequentist performance
- Complex problems become computationally involved - posterior distribution needs to be approximated (e.g., Gibbs sampling)

Today's Lecture

- Gibbs sampling to sample from complex distributions, including posterior distributions
- Bayesian inference with missing data, the concept of ignorability
- Data augmentation to handle missing data in the Bayesian framework

Outline

Gibbs Sampling

Bayesian Inference with Missing Data Under Ignorability

Data Augmentation

Gibbs Sampling

- Consider a distribution with density

$$
p\left(z_{1}, z_{2}, \ldots, z_{k}\right)
$$

- Say you want to sample from it but you don't know how - Say the conditionals are easy to sample from, e.g., each $p\left(z_{1} \mid z_{2}, z_{3}, \ldots, z_{k}\right)$ corresponds to a known and commonly used distribution

Gibbs Sampling

- Consider a distribution with density

$$
p\left(z_{1}, z_{2}, \ldots, z_{k}\right)
$$

- Say you want to sample from it but you don't know how
- Say the conditionals are easy to sample from, e.g., each

$$
\begin{gathered}
p\left(z_{1} \mid z_{2}, z_{3}, \ldots, z_{k}\right) \\
p\left(z_{2} \mid z_{1}, z_{3}, \ldots, z_{k}\right) \\
\vdots \\
p\left(z_{k} \mid z_{1}, z_{2}, \ldots, z_{k-1}\right)
\end{gathered}
$$

corresponds to a known and commonly used distribution

Gibbs Sampling

- Fix initial values $\left(z_{2}^{(0)}, z_{3}^{(0)}, \ldots, z_{k}^{(0)}\right)$
- At iteration t, draw

$$
z_{1}^{(t)} \sim p\left(z_{1} \mid z_{2}^{(t-1)}, z_{3}^{(t-1)}, \ldots, z_{k}^{(t-1)}\right)
$$

Gibbs Sampling

- Fix initial values $\left(z_{2}^{(0)}, z_{3}^{(0)}, \ldots, z_{k}^{(0)}\right)$
- At iteration t, draw

$$
\begin{aligned}
& z_{1}^{(t)} \sim p\left(z_{1} \mid z_{2}^{(t-1)}, z_{3}^{(t-1)}, \ldots, z_{k}^{(t-1)}\right) \\
& z_{2}^{(t)} \sim p\left(z_{2} \mid z_{1}^{(t)}, z_{3}^{(t-1)}, \ldots, z_{k}^{(t-1)}\right)
\end{aligned}
$$

Gibbs Sampling

- Fix initial values $\left(z_{2}^{(0)}, z_{3}^{(0)}, \ldots, z_{k}^{(0)}\right)$
- At iteration t, draw

$$
\begin{aligned}
& z_{1}^{(t)} \sim p\left(z_{1} \mid z_{2}^{(t-1)}, z_{3}^{(t-1)}, \ldots, z_{k}^{(t-1)}\right) \\
& z_{2}^{(t)} \sim p\left(z_{2} \mid z_{1}^{(t)}, z_{3}^{(t-1)}, \ldots, z_{k}^{(t-1)}\right)
\end{aligned}
$$

$$
z_{k}^{(t)} \sim p\left(z_{k} \mid z_{1}^{(t)}, z_{2}^{(t)}, \ldots, z_{k-1}^{(t)}\right)
$$

There exists t_{0} such that for $t>t_{0}$ it is guaranteed that

To learn the theory behind this you'll need to take a course on

Gibbs Sampling

- Fix initial values $\left(z_{2}^{(0)}, z_{3}^{(0)}, \ldots, z_{k}^{(0)}\right)$
- At iteration t, draw

$$
\begin{gathered}
z_{1}^{(t)} \sim p\left(z_{1} \mid z_{2}^{(t-1)}, z_{3}^{(t-1)}, \ldots, z_{k}^{(t-1)}\right) \\
z_{2}^{(t)} \sim p\left(z_{2} \mid z_{1}^{(t)}, z_{3}^{(t-1)}, \ldots, z_{k}^{(t-1)}\right) \\
\vdots \\
z_{k}^{(t)} \sim p\left(z_{k} \mid z_{1}^{(t)}, z_{2}^{(t)}, \ldots, z_{k-1}^{(t)}\right)
\end{gathered}
$$

- There exists t_{0} such that for $t>t_{0}$ it is guaranteed that

$$
\left(z_{1}^{(t)}, z_{2}^{(t)}, \ldots, z_{k}^{(t)}\right) \sim p\left(z_{1}, z_{2}, \ldots, z_{k}\right)
$$

Gibbs Sampling

- Fix initial values $\left(z_{2}^{(0)}, z_{3}^{(0)}, \ldots, z_{k}^{(0)}\right)$
- At iteration t, draw

$$
\begin{gathered}
z_{1}^{(t)} \sim p\left(z_{1} \mid z_{2}^{(t-1)}, z_{3}^{(t-1)}, \ldots, z_{k}^{(t-1)}\right) \\
z_{2}^{(t)} \sim p\left(z_{2} \mid z_{1}^{(t)}, z_{3}^{(t-1)}, \ldots, z_{k}^{(t-1)}\right) \\
\vdots \\
z_{k}^{(t)} \sim p\left(z_{k} \mid z_{1}^{(t)}, z_{2}^{(t)}, \ldots, z_{k-1}^{(t)}\right)
\end{gathered}
$$

- There exists t_{0} such that for $t>t_{0}$ it is guaranteed that

$$
\left(z_{1}^{(t)}, z_{2}^{(t)}, \ldots, z_{k}^{(t)}\right) \sim p\left(z_{1}, z_{2}, \ldots, z_{k}\right)
$$

- To learn the theory behind this you'll need to take a course on Bayesian statistics (or just learn it on your own! ${ }^{1}$)

[^0]
Example: Bhattacharyya's Distribution

Consider real-valued random variables X and Y having a joint distribution with density ${ }^{2}$

$$
p_{X, Y}(x, y)=\exp \left\{\left[1, x, x^{2}\right]\left[\begin{array}{l}
m_{00}, m_{01}, m_{02} \\
m_{10}, m_{11}, m_{12} \\
m_{20}, m_{21}, m_{22}
\end{array}\right]\left[\begin{array}{c}
1 \\
y \\
y^{2}
\end{array}\right]\right\},
$$

where either
(a) $m_{22}=m_{21}=m_{12}=0 ; m_{20}, m_{02}<0 ; m_{11}^{2}<4 m_{20} m_{02}$;
(b) $m_{22}<0,4 m_{22} m_{02}>m_{12}^{2}, 4 m_{22} m_{20}>m_{21}^{2}$.
m_{00} is determined by the other $m_{i j}$'s so that $p_{X, Y}$ integrates to 1 .

[^1]
Example: Bhattacharyya's Distribution

Example: Bhattacharyya's Distribution

From $p_{X, Y}(x, y)$ it is easy to see that

$$
p_{X \mid y}(x \mid y) \propto \frac{1}{\sigma_{X}(y)} \exp \left\{-\frac{\left[x-\mu_{X}(y)\right]^{2}}{2 \sigma_{X}^{2}(y)}\right\}
$$

where

$$
\mu_{X}(y)=-\frac{m_{10}+m_{11} y+m_{12} y^{2}}{2\left(m_{20}+m_{21} y+m_{22} y^{2}\right)},
$$

and

$$
\sigma_{X}^{2}(y)=-\frac{1}{2\left(m_{20}+m_{21} y+m_{22} y^{2}\right)}
$$

Example: Bhattacharyya's Distribution

And analogously, it is easy to see that

$$
p_{Y \mid x}(y \mid x) \propto \frac{1}{\sigma_{Y}(x)} \exp \left\{-\frac{\left[y-\mu_{Y}(x)\right]^{2}}{2 \sigma_{Y}^{2}(x)}\right\}
$$

where

$$
\mu_{Y}(x)=-\frac{m_{01}+m_{11} x+m_{21} x^{2}}{2\left(m_{02}+m_{12} x+m_{22} x^{2}\right)},
$$

and

$$
\sigma_{Y}^{2}(x)=-\frac{1}{2\left(m_{02}+m_{12} x+m_{22} x^{2}\right)}
$$

Example: Bhattacharyya's Distribution

- In fact, Bhattacharyya's distribution characterizes all bivariate distributions with normal conditionals ${ }^{3}$
- Gibbs sampler to draw from $p_{X, Y}$ is easy to implement! (R session 3)

[^2]
Gibbs Sampling for Bayesian Inference

For Bayesian inference we work with the posterior

$$
p(\theta \mid \mathbf{z})=\frac{L(\theta \mid \mathbf{z}) p(\theta)}{\int L(\theta \mid \mathbf{z}) p(\theta) d \theta}
$$

- This expression might not be available in closed form
- Computing functionals of interest $E[f(\theta) \mid \mathbf{z}]$ might be complicated
- Idea: sample from $p(\theta \mid z)$ and evaluate functionals of interest via approximate

- Problem: we might not know how to sample from $p(\theta \mid \mathbf{z})$

Gibbs Sampling for Bayesian Inference

For Bayesian inference we work with the posterior

$$
p(\theta \mid \mathbf{z})=\frac{L(\theta \mid \mathbf{z}) p(\theta)}{\int L(\theta \mid \mathbf{z}) p(\theta) d \theta}
$$

- This expression might not be available in closed form
- Computing functionals of interest $E[f(\theta) \mid \mathbf{z}]$ might be complicated
- Idea: sample from $p(\theta \mid \mathbf{z})$ and evaluate functionals of interest via Monte Carlo, i.e., draw $\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(m)} \sim p(\theta \mid \mathbf{z})$ and approximate

$$
E[f(\theta) \mid \mathbf{z}] \approx \frac{1}{m} \sum_{t=1}^{m} f\left(\theta^{(t)}\right)
$$

- Problem: we might not know how to sample from $p(\theta \mid \mathbf{z})$

Gibbs Sampling for Bayesian Inference

For Bayesian inference we work with the posterior

$$
p(\theta \mid \mathbf{z})=\frac{L(\theta \mid \mathbf{z}) p(\theta)}{\int L(\theta \mid \mathbf{z}) p(\theta) d \theta}
$$

- This expression might not be available in closed form
- Computing functionals of interest $E[f(\theta) \mid \mathbf{z}]$ might be complicated
- Idea: sample from $p(\theta \mid \mathbf{z})$ and evaluate functionals of interest via Monte Carlo, i.e., draw $\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(m)} \sim p(\theta \mid \mathbf{z})$ and approximate

$$
E[f(\theta) \mid \mathbf{z}] \approx \frac{1}{m} \sum_{t=1}^{m} f\left(\theta^{(t)}\right)
$$

- Problem: we might not know how to sample from $p(\theta \mid \mathbf{z})$

Gibbs Sampling for Bayesian Inference

- Say $\theta=\left(\theta_{1}, \ldots, \theta_{d}\right)$
- Say you can sample from each of the conditionals

$$
\begin{gathered}
p\left(\theta_{1} \mid \theta_{2}, \ldots, \theta_{d}, \mathbf{z}\right) \\
\vdots \\
p\left(\theta_{d} \mid \theta_{1}, \ldots, \theta_{d-1}, \mathbf{z}\right)
\end{gathered}
$$

and approximate

Gibbs Sampling for Bayesian Inference

- Say $\theta=\left(\theta_{1}, \ldots, \theta_{d}\right)$
- Say you can sample from each of the conditionals

$$
\begin{gathered}
p\left(\theta_{1} \mid \theta_{2}, \ldots, \theta_{d}, \mathbf{z}\right) \\
\vdots \\
p\left(\theta_{d} \mid \theta_{1}, \ldots, \theta_{d-1}, \mathbf{z}\right)
\end{gathered}
$$

- Then a Gibbs sampler can be implemented to obtain draws

$$
\theta^{(t)}=\left(\theta_{1}^{(t)}, \theta_{2}^{(t)}, \ldots, \theta_{d}^{(t)}\right) \sim p(\theta \mid \mathbf{z}), \quad t=1, \ldots, m
$$

and approximate

$$
E[f(\theta) \mid \mathbf{z}] \approx \frac{1}{m} \sum_{t=1}^{m} f\left(\theta^{(t)}\right)
$$

Example of Gibbs Sampling for Bayesian Inference

Consider the changepoint detection problem presented by Carlin, Gelfand and Smith (1992) ${ }^{4}$

- The data are counts generated over discrete time as

$$
\begin{aligned}
& X_{s} \sim \operatorname{Poisson}(\mu), \text { if } s=1, \ldots, \tau \\
& X_{s} \sim \operatorname{Poisson}(\lambda), \text { if } s=\tau+1, \ldots, T
\end{aligned}
$$

where τ is unknown

- The likelihood function is given by

Example of Gibbs Sampling for Bayesian Inference

Consider the changepoint detection problem presented by Carlin, Gelfand and Smith (1992) ${ }^{4}$

- The data are counts generated over discrete time as

$$
\begin{aligned}
& X_{s} \sim \operatorname{Poisson}(\mu), \text { if } s=1, \ldots, \tau \\
& X_{s} \sim \operatorname{Poisson}(\lambda), \text { if } s=\tau+1, \ldots, T
\end{aligned}
$$

where τ is unknown

- The vector of parameters is $\theta=(\mu, \lambda, \tau)$
- The likelihood function is given by

$$
L\left(\mu, \lambda, \tau \mid x_{1}, \ldots, x_{T}\right)=\prod_{s \leq \tau} \frac{\mu^{x_{s}} e^{-\mu}}{x_{s}!} \prod_{\tau<s \leq T} \frac{\lambda^{x_{s}} e^{-\lambda}}{x_{s}!}
$$

Example of Gibbs Sampling for Bayesian Inference

- Consider the independent priors
- $\mu \sim \operatorname{Gamma}\left(a_{1}, b_{1}\right)$
- $\lambda \sim \operatorname{Gamma}\left(a_{2}, b_{2}\right)$
- $\tau \sim \operatorname{Uniform}(\{1, \ldots, T\})$
- Leading to the posterior (HW3)
- Jointly sampling μ, λ, τ doesn't seem to be easy

Example of Gibbs Sampling for Bayesian Inference

- Consider the independent priors
- $\mu \sim \operatorname{Gamma}\left(a_{1}, b_{1}\right)$
- $\lambda \sim \operatorname{Gamma}\left(a_{2}, b_{2}\right)$
- $\tau \sim \operatorname{Uniform}(\{1, \ldots, T\})$
- Leading to the posterior (HW3)

$$
\begin{aligned}
p\left(\mu, \lambda, \tau \mid x_{1}, \ldots, x_{T}\right) \propto & \mu^{a_{1}+\sum_{s \leq \tau} x_{s}-1} e^{-\mu\left(\tau+b_{1}\right)} \\
& \times \lambda^{a_{2}+\sum_{\tau<s \leq T} x_{s}-1} e^{-\lambda\left(T-\tau+b_{2}\right)}
\end{aligned}
$$

- Jointly sampling μ, λ, τ doesn't seem to be easy

Example of Gibbs Sampling for Bayesian Inference

- Consider the independent priors
- $\mu \sim \operatorname{Gamma}\left(a_{1}, b_{1}\right)$
- $\lambda \sim \operatorname{Gamma}\left(a_{2}, b_{2}\right)$
- $\tau \sim \operatorname{Uniform}(\{1, \ldots, T\})$
- Leading to the posterior (HW3)

$$
\begin{aligned}
p\left(\mu, \lambda, \tau \mid x_{1}, \ldots, x_{T}\right) \propto & \mu^{a_{1}+\sum_{s \leq \tau} x_{s}-1} e^{-\mu\left(\tau+b_{1}\right)} \\
& \times \lambda^{a_{2}+\sum_{\tau<s \leq T} x_{s}-1} e^{-\lambda\left(T-\tau+b_{2}\right)}
\end{aligned}
$$

- Jointly sampling μ, λ, τ doesn't seem to be easy

Example of Gibbs Sampling for Bayesian Inference

However, the posterior conditionals are easy to sample from

$$
\mu \mid \lambda, \tau, x_{1}, \ldots, x_{T} \sim \operatorname{Gamma}\left(a_{1}+\sum_{s \leq \tau} x_{s}, \tau+b_{1}\right)
$$

Example of Gibbs Sampling for Bayesian Inference

However, the posterior conditionals are easy to sample from

$$
\begin{aligned}
\mu \mid \lambda, \tau, x_{1}, \ldots, x_{T} & \sim \operatorname{Gamma}\left(a_{1}+\sum_{s \leq \tau} x_{s}, \tau+b_{1}\right) \\
\lambda \mid \mu, \tau, x_{1}, \ldots, x_{T} & \sim \operatorname{Gamma}\left(a_{2}+\sum_{\tau<s \leq T} x_{s}, T-\tau+b_{2}\right)
\end{aligned}
$$

$$
\tau \mid \mu, \lambda, x_{1}, \ldots, x_{T} \sim \text { Categorical }\left(q_{1}, \ldots, q_{T}\right)
$$

where $q_{t} \propto L\left(\mu, \lambda, \tau=t \mid x_{1}, \ldots, x_{T}\right)$

HW3: confirm that these are indeed the correct conditionals, and
implement the corresponding Gibbs sampler

Example of Gibbs Sampling for Bayesian Inference

However, the posterior conditionals are easy to sample from

$$
\begin{aligned}
& \mu \mid \lambda, \tau, x_{1}, \ldots, x_{T} \sim \operatorname{Gamma}\left(a_{1}+\sum_{s \leq \tau} x_{s}, \tau+b_{1}\right) \\
& \lambda \mid \mu, \tau, x_{1}, \ldots, x_{T} \sim \operatorname{Gamma}\left(a_{2}+\sum_{\tau<s \leq T} x_{s}, T-\tau+b_{2}\right) \\
& \tau \mid \mu, \lambda, x_{1}, \ldots, x_{T} \sim \text { Categorical }\left(q_{1}, \ldots, q_{T}\right) \\
& \quad \text { where } q_{t} \propto L\left(\mu, \lambda, \tau=t \mid x_{1}, \ldots, x_{T}\right) \\
& \propto e^{(\lambda-\mu) t+(\log \mu-\log \lambda) \sum_{s \leq t} x_{s}}
\end{aligned}
$$

implement the corresponding Gibbs sampler

Example of Gibbs Sampling for Bayesian Inference

However, the posterior conditionals are easy to sample from

$$
\begin{aligned}
& \mu \mid \lambda, \tau, x_{1}, \ldots, x_{T} \sim \operatorname{Gamma}\left(a_{1}+\sum_{s \leq \tau} x_{s}, \tau+b_{1}\right) \\
& \lambda \mid \mu, \tau, x_{1}, \ldots, x_{T} \sim \operatorname{Gamma}\left(a_{2}+\sum_{\tau<s \leq T} x_{s}, T-\tau+b_{2}\right) \\
& \tau \mid \mu, \lambda, x_{1}, \ldots, x_{T} \sim \text { Categorical }\left(q_{1}, \ldots, q_{T}\right) \\
& \text { where } q_{t} \propto L\left(\mu, \lambda, \tau=t \mid x_{1}, \ldots, x_{T}\right) \\
& \propto e^{(\lambda-\mu) t+(\log \mu-\log \lambda) \sum_{s \leq t} x_{s}}
\end{aligned}
$$

HW3: confirm that these are indeed the correct conditionals, and implement the corresponding Gibbs sampler

Practical Considerations for Gibbs Sampling

- Starting point: initial value $\theta^{(0)}$ should ideally be chosen in a high probability region of the posterior, but this is not always easy

- Trace plots: to choose m and m_{0} you can plot each entry of $\theta^{(t)}=\left(\theta_{1}^{(t)} \quad \theta^{(t)}\right)$ versus the iteration number t keen the diaws after the "chain has converged'

Practical Considerations for Gibbs Sampling

- Starting point: initial value $\theta^{(0)}$ should ideally be chosen in a high probability region of the posterior, but this is not always easy
- Burn-in period: what if your $\theta^{(0)}$ was far from the high probability region?: run the sampler for m iterations, discard the initial $m_{0}<m$

Practical Considerations for Gibbs Sampling

- Starting point: initial value $\theta^{(0)}$ should ideally be chosen in a high probability region of the posterior, but this is not always easy
- Burn-in period: what if your $\theta^{(0)}$ was far from the high probability region?: run the sampler for m iterations, discard the initial $m_{0}<m$
- Trace plots: to choose m and m_{0} you can plot each entry of $\theta^{(t)}=\left(\theta_{1}^{(t)}, \ldots, \theta_{d}^{(t)}\right)$ versus the iteration number t : keep the draws after the "chain has converged"
- We'll cover these and other diagnostics in R session 3

Practical Considerations for Gibbs Sampling

- Starting point: initial value $\theta^{(0)}$ should ideally be chosen in a high probability region of the posterior, but this is not always easy
- Burn-in period: what if your $\theta^{(0)}$ was far from the high probability region?: run the sampler for m iterations, discard the initial $m_{0}<m$
- Trace plots: to choose m and m_{0} you can plot each entry of $\theta^{(t)}=\left(\theta_{1}^{(t)}, \ldots, \theta_{d}^{(t)}\right)$ versus the iteration number t : keep the draws after the "chain has converged"
- We'll cover these and other diagnostics in R session 3

Outline

Gibbs Sampling

Bayesian Inference with Missing Data Under Ignorability

Data Augmentation

Missing Data and Bayes

- With missing data, things get complicated

$$
L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(r)}, \mathbf{r}\right)=\prod_{i=1}^{n} \int_{\mathcal{Z}_{\left(\bar{F}_{i}\right)}} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right) d z_{i\left(\bar{r}_{i}\right)}
$$

Missing Data and Bayes

- With missing data, things get complicated

$$
L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(r)}, \mathbf{r}\right)=\prod_{i=1}^{n} \int_{\mathcal{Z}_{\left(\bar{r}_{i}\right)}} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right) d z_{i\left(\bar{r}_{i}\right)}
$$

- Under a Bayesian approach, in general we need to obtain

$$
p\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) \propto L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) p(\theta, \psi)
$$

Missing Data and Bayes Under MAR

- Remember: for computing MLEs, life is easier under ignorability (MAR + separability)
- Is it the same for Bayesian inference?
- MAR + separability lead to the observed-data likelihood function
- Under a Bayesian approach we need to obtain

Missing Data and Bayes Under MAR

- Remember: for computing MLEs, life is easier under ignorability (MAR + separability)
- Is it the same for Bayesian inference?
- MAR + separability lead to the observed-data likelihood function

$$
L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(r)}, \mathbf{r}\right) \stackrel{\text { MAR }}{=} \underbrace{\left[\prod_{i=1}^{n} p\left(r_{i} \mid z_{i\left(r_{i}\right)}, \psi\right)\right]}_{p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right)} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{\left(\bar{r}_{i}\right)}} p\left(z_{i} \mid \theta\right) d z_{i\left(\bar{r}_{i}\right)}\right]}_{L_{\text {obs }}\left(\theta \mid \mathbf{z}_{(r)}\right)}
$$

- Under a Bayesian approach we need to obtain

Missing Data and Bayes Under MAR

- Remember: for computing MLEs, life is easier under ignorability (MAR + separability)
- Is it the same for Bayesian inference?
- MAR + separability lead to the observed-data likelihood function

$$
L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) \stackrel{\mathrm{MAR}}{=} \underbrace{\left[\prod_{i=1}^{n} p\left(r_{i} \mid z_{i\left(r_{i}\right)}, \psi\right)\right]}_{p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right)} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{\left(\bar{r}_{i}\right)}} p\left(z_{i} \mid \theta\right) d z_{i\left(\bar{r}_{i}\right)}\right]}_{L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right)}
$$

- Under a Bayesian approach we need to obtain

$$
p\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) \propto L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) p(\theta, \psi)
$$

but typically only θ is of interest, while ψ is a nuisance

Missing Data and Bayes Under MAR

- Under a Bayesian approach, nuisance parameters are integrated over

$$
\begin{aligned}
p\left(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) & =\int p\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) d \psi \\
& =\frac{\int L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) p(\theta, \psi) d \psi}{\iint L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) p(\theta, \psi) d \theta d \psi}
\end{aligned}
$$

Missing Data and Bayes Under MAR

- Under a Bayesian approach, nuisance parameters are integrated over

$$
\begin{aligned}
p\left(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) & =\int p\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) d \psi \\
& =\frac{\int L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) p(\theta, \psi) d \psi}{\iint L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(r}, \mathbf{r}\right) p(\theta, \psi) d \theta d \psi} \\
& \stackrel{\operatorname{MAR}}{=} \frac{L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right) p(\theta, \psi) d \psi}{\int L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right) p(\theta, \psi) d \psi d \theta}
\end{aligned}
$$

Missing Data and Bayes Under MAR

- Under a Bayesian approach, nuisance parameters are integrated over

$$
\begin{aligned}
p\left(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) & =\int p\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) d \psi \\
& =\frac{\int L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) p(\theta, \psi) d \psi}{\iint L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) p(\theta, \psi) d \theta d \psi} \\
& \stackrel{\text { MAR }}{=} \frac{L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\theta, \psi) d \psi}{\int L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\theta, \psi) d \psi d \theta}
\end{aligned}
$$

If additionally, $\theta \Perp \psi$ a priori

$$
p\left(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) \stackrel{\text { MAR }}{=} \frac{L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) p(\theta) \quad \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\psi) d \psi}{\int L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) p(\theta) d \theta \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\psi) d \psi}
$$

Missing Data and Bayes Under MAR

- Under a Bayesian approach, nuisance parameters are integrated over

$$
\begin{aligned}
p\left(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) & =\int p\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) d \psi \\
& =\frac{\int L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) p(\theta, \psi) d \psi}{\iint L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) p(\theta, \psi) d \theta d \psi} \\
& \stackrel{\text { MAR }}{=} \frac{L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\theta, \psi) d \psi}{\int L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\theta, \psi) d \psi d \theta}
\end{aligned}
$$

If additionally, $\theta \Perp \psi$ a priori

$$
\begin{aligned}
p\left(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) & \stackrel{\text { MAR }}{=} \frac{L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) p(\theta) \quad \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\psi) d \psi}{\int L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) p(\theta) d \theta \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\psi) d \psi} \\
& \stackrel{\text { MAR }}{\propto} L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) p(\theta)
\end{aligned}
$$

Missing Data and Bayes Under MAR

- Under a Bayesian approach, nuisance parameters are integrated over

$$
\begin{aligned}
p\left(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) & =\int p\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) d \psi \\
& =\frac{\int L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) p(\theta, \psi) d \psi}{\iint L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) p(\theta, \psi) d \theta d \psi} \\
& \stackrel{\text { MAR }}{=} \frac{L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\theta, \psi) d \psi}{\int L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\theta, \psi) d \psi d \theta}
\end{aligned}
$$

If additionally, $\theta \Perp \psi$ a priori

$$
\begin{aligned}
p\left(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) & \stackrel{\operatorname{MAR}}{=} \frac{L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) p(\theta) \quad \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\psi) d \psi}{\int L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) p(\theta) d \theta \int p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi\right) p(\psi) d \psi} \\
& \stackrel{\operatorname{MAR}}{\propto} L_{o b s}\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right) p(\theta) \\
& \stackrel{\operatorname{MAR}}{\propto} p\left(\theta \mid \mathbf{z}_{(\mathbf{r})}\right)
\end{aligned}
$$

Therefore, ignorability for Bayesian inference requires MAR + separability $+\theta \Perp \psi$ a priori

Missing Data and Bayes Under MAR

- Under a Bayesian approach, nuisance parameters are integrated over

$$
\begin{aligned}
p\left(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) & =\int p\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) d \psi \\
& =\frac{\int L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(r)}, \mathbf{r}\right) p(\theta, \psi) d \psi}{\iint L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(r}, \mathbf{r}\right) p(\theta, \psi) d \theta d \psi} \\
& \stackrel{\text { MAR }}{=} \frac{L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right) p(\theta, \psi) d \psi}{\int L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right) p(\theta, \psi) d \psi d \theta}
\end{aligned}
$$

- If additionally, $\theta \Perp \psi$ a priori

$$
\begin{aligned}
p\left(\theta \mid \mathbf{z}_{(r)}, \mathbf{r}\right) & \stackrel{\operatorname{MAR}}{=} \frac{L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) p(\theta) \quad \int p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right) p(\psi) d \psi}{\int L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) p(\theta) d \theta \int p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right) p(\psi) d \psi} \\
& \stackrel{\operatorname{MAR}}{\propto} L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) p(\theta) \\
& { }^{\operatorname{MAR}} p\left(\theta \mid \mathbf{z}_{(r)}\right)
\end{aligned}
$$

- Therefore, ignorability for Bayesian inference requires MAR + separability $+\theta \Perp \psi$ a priori

Missing Data and Bayes Under MAR

- Under a Bayesian approach, nuisance parameters are integrated over

$$
\begin{aligned}
p\left(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) & =\int p\left(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}\right) d \psi \\
& =\frac{\int L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(r)}, \mathbf{r}\right) p(\theta, \psi) d \psi}{\iint L_{o b s}\left(\theta, \psi \mid \mathbf{z}_{(r}, \mathbf{r}\right) p(\theta, \psi) d \theta d \psi} \\
& \stackrel{\text { MAR }}{=} \frac{L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right) p(\theta, \psi) d \psi}{\int L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) \int p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right) p(\theta, \psi) d \psi d \theta}
\end{aligned}
$$

- If additionally, $\theta \Perp \psi$ a priori

$$
\begin{aligned}
p\left(\theta \mid \mathbf{z}_{(r)}, \mathbf{r}\right) & \stackrel{\operatorname{MAR}}{=} \frac{L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) p(\theta) \quad \int p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right) p(\psi) d \psi}{\int L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) p(\theta) d \theta \int p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi\right) p(\psi) d \psi} \\
& \stackrel{\operatorname{MAR}}{\propto} L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right) p(\theta) \\
& { }^{\operatorname{MAR}} p\left(\theta \mid \mathbf{z}_{(r)}\right)
\end{aligned}
$$

- Therefore, ignorability for Bayesian inference requires MAR + separability $+\theta \Perp \psi$ a priori
- Even then, how to obtain or sample from $p\left(\theta \mid \mathbf{z}_{(r)}\right)$?

Outline

Gibbs Sampling

Bayesian Inference with Missing Data Under Ignorability

Data Augmentation

Data Augmentation

Main idea, say:

- We want to sample from posterior

$$
p(\theta \mid y) \propto p(y \mid \theta) p(\theta)
$$

but this is difficult

- It is easy to sample from

for some unobserved x
- It is easy to sample from

Data Augmentation

Main idea, say:

- We want to sample from posterior

$$
p(\theta \mid y) \propto p(y \mid \theta) p(\theta)
$$

but this is difficult

- It is easy to sample from

$$
p(\theta \mid y, x) \propto p(x, y \mid \theta) p(\theta)
$$

for some unobserved x

- It is easy to sample from

Data Augmentation

Main idea, say:

- We want to sample from posterior

$$
p(\theta \mid y) \propto p(y \mid \theta) p(\theta)
$$

but this is difficult

- It is easy to sample from

$$
p(\theta \mid y, x) \propto p(x, y \mid \theta) p(\theta)
$$

for some unobserved x

- It is easy to sample from

$$
p(x \mid y, \theta)
$$

Data Augmentation

- Start from $x^{(0)}$ (or from $\theta^{(0)}$ and switch the steps)
- At iteration t, draw

$$
\begin{gathered}
\theta^{(t)} \sim p\left(\theta \mid y, x^{(t-1)}\right) \\
x^{(t)} \sim p\left(x \mid y, \theta^{(t)}\right)
\end{gathered}
$$

- Generally applicable, not only to missing data problems!
- Looks very much like an application of Gibbs sampling, what's special?

Data Augmentation

- Start from $x^{(0)}$ (or from $\theta^{(0)}$ and switch the steps)
- At iteration t, draw

$$
\begin{gathered}
\theta^{(t)} \sim p\left(\theta \mid y, x^{(t-1)}\right) \\
x^{(t)} \sim p\left(x \mid y, \theta^{(t)}\right)
\end{gathered}
$$

- There exists t_{0} such that for $t>t_{0}$ it is guaranteed that

$$
\left(x^{(t)}, \theta^{(t)}\right) \sim p(x, \theta \mid y)
$$

and

$$
\theta^{(t)} \sim p(\theta \mid y)
$$

- Generally applicable, not only to missing data problems!

Data Augmentation

- Start from $x^{(0)}$ (or from $\theta^{(0)}$ and switch the steps)
- At iteration t, draw

$$
\begin{gathered}
\theta^{(t)} \sim p\left(\theta \mid y, x^{(t-1)}\right) \\
x^{(t)} \sim p\left(x \mid y, \theta^{(t)}\right)
\end{gathered}
$$

- There exists t_{0} such that for $t>t_{0}$ it is guaranteed that

$$
\left(x^{(t)}, \theta^{(t)}\right) \sim p(x, \theta \mid y)
$$

and

$$
\theta^{(t)} \sim p(\theta \mid y)
$$

- Generally applicable, not only to missing data problems!
- Looks very much like an application of Gibbs sampling, what's special?

A Timeline for Gibbs Sampling and Data Augmentation

- 1977: Dempster, Laird \& Rubin popularize the EM algorithm

1984: Geman \& Geman introduce the Gibbs sampler for image processing - ignored in the statistics literature

1987: Tanner \& Wong introduce the original Data Augmentation naner as the Ravesian analog of the FM aloorithm - not auite what we presented as DA above

A Timeline for Gibbs Sampling and Data Augmentation

- 1977: Dempster, Laird \& Rubin popularize the EM algorithm
- 1984: Geman \& Geman introduce the Gibbs sampler for image processing - ignored in the statistics literature

1987: Tanner \& Wong introduce the original Data Augmentation
paper, as the Bayesian analog of the EM algorithm - not quite what we presented as DA above

1990: Gelfand \& Smith introduce the Gibbs sampler in the statistics literature and show its connection with DA - nowadavs we see DA as an application of Gibbs sampling

A Timeline for Gibbs Sampling and Data Augmentation

- 1977: Dempster, Laird \& Rubin popularize the EM algorithm
- 1984: Geman \& Geman introduce the Gibbs sampler for image processing - ignored in the statistics literature
- 1987: Tanner \& Wong introduce the original Data Augmentation paper, as the Bayesian analog of the EM algorithm - not quite what we presented as DA above

1990: Gelfand \& Smith introduce the Gibbs sampler in the statistics literature and showr its connertion with $D \Lambda-$ nomadaws wosen $D \Lambda$ as an application of Gibbs sampling a comprehensive view of different DA-type algorithms

A Timeline for Gibbs Sampling and Data Augmentation

- 1977: Dempster, Laird \& Rubin popularize the EM algorithm
- 1984: Geman \& Geman introduce the Gibbs sampler for image processing - ignored in the statistics literature
- 1987: Tanner \& Wong introduce the original Data Augmentation paper, as the Bayesian analog of the EM algorithm - not quite what we presented as DA above
- 1990: Gelfand \& Smith introduce the Gibbs sampler in the statistics literature and show its connection with DA - nowadays we see DA as an application of Gibbs sampling
a comprehensive view of different DA-type algorithms

A Timeline for Gibbs Sampling and Data Augmentation

- 1977: Dempster, Laird \& Rubin popularize the EM algorithm
- 1984: Geman \& Geman introduce the Gibbs sampler for image processing - ignored in the statistics literature
- 1987: Tanner \& Wong introduce the original Data Augmentation paper, as the Bayesian analog of the EM algorithm - not quite what we presented as DA above
- 1990: Gelfand \& Smith introduce the Gibbs sampler in the statistics literature and show its connection with DA - nowadays we see DA as an application of Gibbs sampling
- 2001: van Dyk \& Meng publish "The Art of Data Augmentation" as a comprehensive view of different DA-type algorithms

DA for Handling Missing Data in Bayesian Inference

- Consider the full-data likelihood

$$
L(\theta, \psi \mid \mathbf{z}, \mathbf{r})=\prod_{i=1}^{n} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right)
$$

- Say you can sample from
$p^{\prime}(\theta, \psi \mid z, r) \propto L(\theta, \psi \mid z, r) p(\theta, \psi)$

DA for Handling Missing Data in Bayesian Inference

- Consider the full-data likelihood

$$
L(\theta, \psi \mid \mathbf{z}, \mathbf{r})=\prod_{i=1}^{n} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right)
$$

- Say you can sample from

$$
p(\theta, \psi \mid \mathbf{z}, \mathbf{r}) \propto L(\theta, \psi \mid \mathbf{z}, \mathbf{r}) p(\theta, \psi)
$$

DA for Handling Missing Data in Bayesian Inference

- Consider the full-data likelihood

$$
L(\theta, \psi \mid \mathbf{z}, \mathbf{r})=\prod_{i=1}^{n} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right)
$$

- Say you can sample from

$$
p(\theta, \psi \mid \mathbf{z}, \mathbf{r}) \propto L(\theta, \psi \mid \mathbf{z}, \mathbf{r}) p(\theta, \psi)
$$

- Say you can sample from

$$
p\left(z_{i\left(\bar{r}_{i}\right)} \mid z_{i\left(r_{i}\right)}, r_{i}, \theta, \psi\right) \propto p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right)
$$

for $i=1, \ldots, n$
algorithm!

DA for Handling Missing Data in Bayesian Inference

- Consider the full-data likelihood

$$
L(\theta, \psi \mid \mathbf{z}, \mathbf{r})=\prod_{i=1}^{n} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right)
$$

- Say you can sample from

$$
p(\theta, \psi \mid \mathbf{z}, \mathbf{r}) \propto L(\theta, \psi \mid \mathbf{z}, \mathbf{r}) p(\theta, \psi)
$$

- Say you can sample from

$$
p\left(z_{i\left(r_{i}\right)} \mid z_{i\left(r_{i}\right)}, r_{i}, \theta, \psi\right) \propto p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right)
$$

for $i=1, \ldots, n$

- If this is the case, you can iteratively sample from these to run a DA algorithm!

DA for Handling Missing Data in Bayesian Inference

- Typically, sampling from $p(\theta, \psi \mid \mathbf{z}, \mathbf{r})$ is not easy
- Say $\theta=\left(\theta_{1}, \ldots, \theta_{d_{1}}\right)$ and $\psi=\left(\psi_{1}, \ldots, \psi_{d_{2}}\right)$

DA for Handling Missing Data in Bayesian Inference

- Typically, sampling from $p(\theta, \psi \mid \mathbf{z}, \mathbf{r})$ is not easy
- Say $\theta=\left(\theta_{1}, \ldots, \theta_{d_{1}}\right)$ and $\psi=\left(\psi_{1}, \ldots, \psi_{d_{2}}\right)$
- Instead of sampling (θ, ψ) jointly, we might have to sample sequentially from the conditionals

$$
\begin{gathered}
p\left(\theta_{1} \mid \theta_{2}, \ldots, \theta_{d_{1}}, \psi, \mathbf{z}, \mathbf{r}\right) \\
\vdots \\
p\left(\theta_{d_{1}} \mid \theta_{1}, \ldots, \theta_{d_{1}-1}, \psi, \mathbf{z}, \mathbf{r}\right)
\end{gathered}
$$

- Or, we might be able to sample from

DA for Handling Missing Data in Bayesian Inference

- Typically, sampling from $p(\theta, \psi \mid \mathbf{z}, \mathbf{r})$ is not easy
- Say $\theta=\left(\theta_{1}, \ldots, \theta_{d_{1}}\right)$ and $\psi=\left(\psi_{1}, \ldots, \psi_{d_{2}}\right)$
- Instead of sampling (θ, ψ) jointly, we might have to sample sequentially from the conditionals

$$
\begin{gathered}
p\left(\theta_{1} \mid \theta_{2}, \ldots, \theta_{d_{1}}, \psi, \mathbf{z}, \mathbf{r}\right) \\
\vdots \\
p\left(\theta_{d_{1}} \mid \theta_{1}, \ldots, \theta_{d_{1}-1}, \psi, \mathbf{z}, \mathbf{r}\right) \\
p\left(\psi_{1} \mid \psi_{2}, \ldots, \psi_{d_{2}}, \theta, \mathbf{z}, \mathbf{r}\right) \\
\vdots \\
p\left(\psi_{d_{2}} \mid \psi_{1}, \ldots, \psi_{d_{2}-1}, \theta, \mathbf{z}, \mathbf{r}\right)
\end{gathered}
$$

DA for Handling Missing Data in Bayesian Inference

- Typically, sampling from $p(\theta, \psi \mid \mathbf{z}, \mathbf{r})$ is not easy
- Say $\theta=\left(\theta_{1}, \ldots, \theta_{d_{1}}\right)$ and $\psi=\left(\psi_{1}, \ldots, \psi_{d_{2}}\right)$
- Instead of sampling (θ, ψ) jointly, we might have to sample sequentially from the conditionals

$$
\begin{gathered}
p\left(\theta_{1} \mid \theta_{2}, \ldots, \theta_{d_{1}}, \psi, \mathbf{z}, \mathbf{r}\right) \\
\vdots \\
p\left(\theta_{d_{1}} \mid \theta_{1}, \ldots, \theta_{d_{1}-1}, \psi, \mathbf{z}, \mathbf{r}\right) \\
p\left(\psi_{1} \mid \psi_{2}, \ldots, \psi_{d_{2}}, \theta, \mathbf{z}, \mathbf{r}\right) \\
\vdots \\
p\left(\psi_{d_{2}} \mid \psi_{1}, \ldots, \psi_{d_{2}-1}, \theta, \mathbf{z}, \mathbf{r}\right)
\end{gathered}
$$

- Or, we might be able to sample from

$$
\begin{aligned}
& p(\theta \mid \psi, \mathbf{z}, \mathbf{r}) \\
& p(\psi \mid \theta, \mathbf{z}, \mathbf{r})
\end{aligned}
$$

DA for Bayesian Inference Under Ignorability

Even under ignorability, the integrals in $L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right)$ complicate things

- Consider the full-data likelihood for the study variables only

$$
L(\theta \mid \mathbf{z})=\prod_{i=1}^{n} p\left(z_{i} \mid \theta\right)
$$

or you can sample from

DA for Bayesian Inference Under Ignorability

Even under ignorability, the integrals in $L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right)$ complicate things

- Consider the full-data likelihood for the study variables only

$$
L(\theta \mid \mathbf{z})=\prod_{i=1}^{n} p\left(z_{i} \mid \theta\right)
$$

- Say you can sample from

$$
p(\theta \mid \mathbf{z}) \propto L(\theta \mid \mathbf{z}) p(\theta)
$$

or you can sample from

- Say you can sample for $i=1, \ldots, n$ from

DA for Bayesian Inference Under Ignorability

Even under ignorability, the integrals in $L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right)$ complicate things

- Consider the full-data likelihood for the study variables only

$$
L(\theta \mid \mathbf{z})=\prod_{i=1}^{n} p\left(z_{i} \mid \theta\right)
$$

- Say you can sample from

$$
p(\theta \mid \mathbf{z}) \propto L(\theta \mid \mathbf{z}) p(\theta)
$$

or you can sample from

$$
\begin{gathered}
p\left(\theta_{1} \mid \theta_{2}, \ldots, \theta_{d_{1}}, \mathbf{z}\right) \\
\vdots \\
p\left(\theta_{d_{1}} \mid \theta_{1}, \ldots, \theta_{d_{1}-1}, \mathbf{z}\right)
\end{gathered}
$$

DA for Bayesian Inference Under Ignorability

Even under ignorability, the integrals in $L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right)$ complicate things

- Consider the full-data likelihood for the study variables only

$$
L(\theta \mid \mathbf{z})=\prod_{i=1}^{n} p\left(z_{i} \mid \theta\right)
$$

- Say you can sample from

$$
p(\theta \mid \mathbf{z}) \propto L(\theta \mid \mathbf{z}) p(\theta)
$$

or you can sample from

$$
\begin{gathered}
p\left(\theta_{1} \mid \theta_{2}, \ldots, \theta_{d_{1}}, \mathbf{z}\right) \\
\vdots \\
p\left(\theta_{d_{1}} \mid \theta_{1}, \ldots, \theta_{d_{1}-1}, \mathbf{z}\right)
\end{gathered}
$$

- Say you can sample for $i=1, \ldots, n$ from

$$
p\left(z_{i\left(\bar{r}_{i}\right)} \mid z_{i\left(r_{i}\right)}, \theta\right)
$$

DA for Bayesian Inference Under Ignorability

Even under ignorability, the integrals in $L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right)$ complicate things

- Consider the full-data likelihood for the study variables only

$$
L(\theta \mid \mathbf{z})=\prod_{i=1}^{n} p\left(z_{i} \mid \theta\right)
$$

- Say you can sample from

$$
p(\theta \mid \mathbf{z}) \propto L(\theta \mid \mathbf{z}) p(\theta)
$$

or you can sample from

$$
\begin{gathered}
p\left(\theta_{1} \mid \theta_{2}, \ldots, \theta_{d_{1}}, \mathbf{z}\right) \\
\vdots \\
p\left(\theta_{d_{1}} \mid \theta_{1}, \ldots, \theta_{d_{1}-1}, \mathbf{z}\right)
\end{gathered}
$$

- Say you can sample for $i=1, \ldots, n$ from

$$
p\left(z_{i\left(\bar{r}_{i}\right)} \mid z_{i\left(r_{i}\right)}, \theta\right)
$$

- Then you can implement a DA algorithm under ignorability!

Example: Multinomial Data, Dirichlet Prior

Continuing our example from the previous classes:

- Let $Z_{i}=\left(Z_{i 1}, Z_{i 2}\right), \quad Z_{i 1}, Z_{i 2} \in\{1,2\}, \quad Z_{i}$'s are i.i.d.,

$$
p\left(Z_{i 1}=k, Z_{i 2}=l \mid \theta\right)=\pi_{k l}
$$

- $\theta=\left(\ldots, \pi_{k l}, \ldots\right), \quad W_{i k l}=I\left(Z_{i 1}=k, Z_{i 2}=l\right)$
- The likelihood of the study variables is

$$
L(\theta \mid \mathbf{z})=\prod_{i}\left[\prod_{k, l} \pi_{k l}^{W_{k l}}\right]=\prod_{k, l} \pi_{k l}^{n_{k l}}
$$

where $n_{k l}=\sum_{i} W_{i k l}, \quad k, l \in\{1,2\}$

- Say $\theta=\left(\ldots, \pi_{k l}, \ldots\right) \sim \operatorname{Dirichlet}(\alpha), \quad \alpha=\left(\ldots, \alpha_{k l}, \ldots\right)$
- Therefore, $\theta \mid \mathbf{z} \sim \operatorname{Dirichlet}\left(\alpha^{\prime}\right), \quad \alpha^{\prime}=\left(\ldots, \alpha_{k l}+n_{k l}, \ldots\right)$

Example: Multinomial Data, Dirichlet Prior

However, we have missing data (we'll assume ignorability)

- Let $R_{i}=\left(R_{i 1}, R_{i 2}\right), \quad R_{i 1}, R_{i 2} \in\{0,1\}, \quad R_{i}$'s are i.i.d.
- In HW2, you show that the observed-data likelihood for the study variables can be written as

$$
L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right)=\prod_{i} \pi_{z_{i 1} z_{i 2}}^{l\left(r_{i}=11\right)} \pi_{z_{i 1}+}^{l\left(r_{i}=10\right)} \pi_{+z_{i 2}}^{l\left(r_{i}=01\right)}
$$

- A quick inspection shows that Bayesian inference with $L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right)$ becomes complicated

Example: Multinomial Data, Dirichlet Prior

However, we have missing data (we'll assume ignorability)

- Let $R_{i}=\left(R_{i 1}, R_{i 2}\right), \quad R_{i 1}, R_{i 2} \in\{0,1\}, \quad R_{i}$'s are i.i.d.
- In HW2, you show that the observed-data likelihood for the study variables can be written as

$$
L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right)=\prod_{i} \pi_{z_{i 1} z_{i 2}}^{l\left(r_{i}=11\right)} \pi_{z_{i 1}+}^{l\left(r_{i}=10\right)} \pi_{+z_{i 2}}^{l\left(r_{i}=01\right)}
$$

- A quick inspection shows that Bayesian inference with $L_{o b s}\left(\theta \mid \mathbf{z}_{(r)}\right)$ becomes complicated
- However, notice that the distribution of $Z_{(\bar{r})} \mid z_{(r)}, \theta$ is easy to derive!

$$
\begin{aligned}
& \text { For } r=01, Z_{1} \mid z_{2}, \theta \sim \text { Categorical }\left[\pi_{+z_{2}}^{-1}\left(\pi_{1, z_{2}}, \pi_{2, z_{2}}\right)\right] \\
& \text { For } r=10, Z_{2} \mid z_{1}, \theta \sim \text { Categorical }\left[\pi_{z_{1}+}^{-1}\left(\pi_{z_{1}, 1}, \pi_{z_{1}, 2}\right)\right] \\
& \text { For } r=00, Z \mid \theta \sim \text { Categorical }\left[\left(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}\right)\right] \\
& \text { For } r=11 \text {, there's nothing to sample! }
\end{aligned}
$$

Example: Multinomial Data, Dirichlet Prior

Therefore, implementing a DA algorithm is very straightforward!

- Choose starting point $\theta^{(0)}$
- Iteratively do
(a) For $i=1, \ldots, n$, sample

$$
Z_{i\left(\overline{(}_{i}\right)}^{(t)} \sim p\left(z_{\left(\bar{r}_{i}\right)} \mid z_{i\left(r_{i}\right)}, \theta^{(t-1)}\right)
$$

and define $z_{i}^{(t)}="\left(z_{i\left(r_{i}\right)}, Z_{i\left(\bar{r}_{i}\right)}^{(t)}\right){ }^{\prime \prime}{ }^{5}$
${ }^{5} \mathrm{We}$ don't really mean "put $z_{i\left(r_{i}\right)}$ on the left and $Z_{i\left(\bar{r}_{i}\right)}^{(t)}$ on the right," but rather, keep the observed entries of z_{i} fixed at $z_{i\left(r_{i}\right)}$ and fill its missing entries with $Z_{i\left(\bar{r}_{i}\right)}^{(t)}$

Example: Multinomial Data, Dirichlet Prior

Therefore, implementing a DA algorithm is very straightforward!

- Choose starting point $\theta^{(0)}$
- Iteratively do
(a) For $i=1, \ldots, n$, sample

$$
Z_{i\left(\bar{r}_{i}\right)}^{(t)} \sim p\left(z_{\left(\bar{r}_{i}\right)} \mid z_{i\left(r_{i}\right)}, \theta^{(t-1)}\right)
$$

and define $z_{i}^{(t)}="\left(z_{i\left(r_{i}\right)}, Z_{i\left(\bar{r}_{i}\right)}^{(t)}\right){ }^{\prime \prime 5}$
(b) Sample $\theta^{(t)} \mid \mathbf{z}^{(t)} \sim \operatorname{Dirichlet}\left(\alpha^{(t)}\right)$, where $\alpha^{(t)}=\left(\ldots, \alpha_{k l}+n_{k l}^{(t)}, \ldots\right)$ where $\mathbf{z}^{(t)}=\left\{z_{i}^{(t)}\right\}_{i=1}^{n}$ and each $n_{k l}^{(t)}$ is computed from $\mathbf{z}^{(t)}$
${ }^{5} \mathrm{We}$ don't really mean "put $z_{i\left(r_{i}\right)}$ on the left and $Z_{i\left(\bar{r}_{i}\right)}^{(t)}$ on the right," but rather, keep the observed entries of z_{i} fixed at $z_{i\left(r_{i}\right)}$ and fill its missing entries with $Z_{i\left(\bar{r}_{i}\right)}^{(t)}$

Example: Multinomial Data, Dirichlet Prior

Therefore, implementing a DA algorithm is very straightforward!

- Choose starting point $\theta^{(0)}$
- Iteratively do
(a) For $i=1, \ldots, n$, sample

$$
Z_{i\left(\bar{r}_{i}\right)}^{(t)} \sim p\left(z_{\left(\bar{r}_{i}\right)} \mid z_{i\left(r_{i}\right)}, \theta^{(t-1)}\right)
$$

and define $z_{i}^{(t)}="\left(z_{i\left(r_{i}\right)}, Z_{i\left(\bar{r}_{i}\right)}^{(t)}\right){ }^{\prime \prime}{ }^{5}$
(b) Sample $\theta^{(t)} \mid \mathbf{z}^{(t)} \sim \operatorname{Dirichlet}\left(\alpha^{(t)}\right)$, where $\alpha^{(t)}=\left(\ldots, \alpha_{k l}+n_{k l}^{(t)}, \ldots\right)$ where $\mathbf{z}^{(t)}=\left\{z_{i}^{(t)}\right\}_{i=1}^{n}$ and each $n_{k l}^{(t)}$ is computed from $\mathbf{z}^{(t)}$

HW3: note that part (b) only uses $n_{k l}^{(t)}$ from part (a). Can you find a way of simplifying part (a) so that we don't need to sample each $z_{i}^{(t)}$ individually but still obtain each $n_{k l}^{(t)}$?
${ }^{5} \mathrm{We}$ don't really mean "put $z_{i\left(r_{i}\right)}$ on the left and $Z_{i\left(\bar{r}_{i}\right)}^{(t)}$ on the right," but rather, keep the observed entries of z_{i} fixed at $z_{i\left(r_{i}\right)}$ and fill its missing entries with $Z_{i\left(\bar{r}_{i}\right)}^{(t)}$

Summary

Main take-aways from today's lecture:

- Gibbs sampling to sample from complex distributions via sequential sampling from conditionals - commonly applied to sampling from posterior distributions
- Ignorability for Bayesian inference: MAR + separability $+\theta \Perp \psi$ a priori
- Data augmentation to handle missing data in Bayesian inference - it can be straightforward for some problems, but more generally it needs additional Gibbs steps
- Multiple imputation (finally!)
- Multiple imputation by chained equations

Summary

Main take-aways from today's lecture:

- Gibbs sampling to sample from complex distributions via sequential sampling from conditionals - commonly applied to sampling from posterior distributions
- Ignorability for Bayesian inference: MAR + separability $+\theta \Perp \psi$ a priori
- Data augmentation to handle missing data in Bayesian inference - it can be straightforward for some problems, but more generally it needs additional Gibbs steps

Next lecture:

- Multiple imputation (finally!)
- Multiple imputation by chained equations

[^0]: ${ }^{1}$ https://doi.org/10.1080/00031305.1992.10475878

[^1]: ${ }^{2}$ Distribution credited to Anil Kumar Bhattacharyya, who was a professor at the Indian Statistical Institute. See, e.g., https://projecteuclid.org/download/pdf_1/euclid.ss/1009213728

[^2]: ${ }^{3}$ Arnold, Castillo and Sarabia (Statistical Science, 2001):
 https://projecteuclid.org/download/pdf_1/euclid.ss/1009213728

