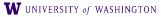
Statistical Methods for Analysis with Missing Data

Lecture 9: Gibbs sampling, ignorability under Bayesian inference, data augmentation

Mauricio Sadinle

Department of Biostatistics



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Previous Lecture

Introduction to Bayesian inference:

- Alternative framework for deriving inferences from data
- Philosophical motivation: inclusion of prior belief or knowledge, uncertainty quantification in terms of distributions for parameters
- Practical motivation: convenient in some problems, might lead to good frequentist performance
- Complex problems become computationally involved posterior distribution needs to be approximated (e.g., Gibbs sampling)

Today's Lecture

 Gibbs sampling to sample from complex distributions, including posterior distributions

Bayesian inference with missing data, the concept of *ignorability*

 Data augmentation to handle missing data in the Bayesian framework

Outline

Gibbs Sampling

Bayesian Inference with Missing Data Under Ignorability

Data Augmentation

Consider a distribution with density

$$p(z_1, z_2, \ldots, z_k)$$

Say you want to sample from it but you don't know how

Say the conditionals are easy to sample from, e.g., each

 $p(z_1 | z_2, z_3, \dots, z_k)$ $p(z_2 | z_1, z_3, \dots, z_k)$:

$$p(z_k \mid z_1, z_2, \ldots, z_{k-1})$$

corresponds to a known and commonly used distribution

・ロ ・ ・ 一部 ・ く 差 ・ く 差 ・ 差 ・ う へ ペ
5/32

Consider a distribution with density

$$p(z_1, z_2, \ldots, z_k)$$

Say you want to sample from it but you don't know how

▶ Say the conditionals are easy to sample from, e.g., each

$$p(z_1 \mid z_2, z_3, \dots, z_k)$$

$$p(z_2 \mid z_1, z_3, \dots, z_k)$$

$$\vdots$$

$$p(z_k \mid z_1, z_2, \dots, z_{k-1})$$

corresponds to a known and commonly used distribution

- Fix initial values $(z_2^{(0)}, z_3^{(0)}, \dots, z_k^{(0)})$
- At iteration t, draw

$$z_1^{(t)} \sim p(z_1 \mid z_2^{(t-1)}, z_3^{(t-1)}, \dots, z_k^{(t-1)})$$

$$z_2^{(t)} \sim p(z_2 \mid z_1^{(t)}, z_3^{(t-1)}, \dots, z_k^{(t-1)})$$

$$z_k^{(t)} \sim p(z_k \mid z_1^{(t)}, z_2^{(t)}, \dots, z_{k-1}^{(t)})$$

• There exists t_0 such that for $t > t_0$ it is guaranteed that

$$(z_1^{(t)}, z_2^{(t)}, \dots, z_k^{(t)}) \sim p(z_1, z_2, \dots, z_k)$$

 To learn the theory behind this you'll need to take a course on Bayesian statistics (or just learn it on your own!¹)

¹https://doi.org/10.1080/00031305.1992.10475878□ > <屆 > <屆 > < 둘 > < 둘 > ○ < ⓒ

- Fix initial values $(z_2^{(0)}, z_3^{(0)}, \dots, z_k^{(0)})$
- At iteration t, draw

$$z_1^{(t)} \sim p(z_1 \mid z_2^{(t-1)}, z_3^{(t-1)}, \dots, z_k^{(t-1)})$$

$$z_2^{(t)} \sim p(z_2 \mid z_1^{(t)}, z_3^{(t-1)}, \dots, z_k^{(t-1)})$$

$$z_k^{(t)} \sim p(z_k \mid z_1^{(t)}, z_2^{(t)}, \dots, z_{k-1}^{(t)})$$

• There exists t_0 such that for $t > t_0$ it is guaranteed that

$$(z_1^{(t)}, z_2^{(t)}, \dots, z_k^{(t)}) \sim p(z_1, z_2, \dots, z_k)$$

 To learn the theory behind this you'll need to take a course on Bayesian statistics (or just learn it on your own!¹)

¹https://doi.org/10.1080/00031305.1992.10475878□ > <@ > <≧ > <≧ > <≧ > < ○ < ○

- Fix initial values $(z_2^{(0)}, z_3^{(0)}, \dots, z_k^{(0)})$
- At iteration t, draw

$$z_1^{(t)} \sim p(z_1 \mid z_2^{(t-1)}, z_3^{(t-1)}, \dots, z_k^{(t-1)})$$
$$z_2^{(t)} \sim p(z_2 \mid z_1^{(t)}, z_3^{(t-1)}, \dots, z_k^{(t-1)})$$
$$\vdots$$
$$z_k^{(t)} \sim p(z_k \mid z_1^{(t)}, z_2^{(t)}, \dots, z_{k-1}^{(t)})$$

• There exists t_0 such that for $t > t_0$ it is guaranteed that

$$(z_1^{(t)}, z_2^{(t)}, \dots, z_k^{(t)}) \sim p(z_1, z_2, \dots, z_k)$$

 To learn the theory behind this you'll need to take a course on Bayesian statistics (or just learn it on your own!¹)

- Fix initial values $(z_2^{(0)}, z_3^{(0)}, \dots, z_k^{(0)})$
- At iteration t, draw

$$z_1^{(t)} \sim p(z_1 \mid z_2^{(t-1)}, z_3^{(t-1)}, \dots, z_k^{(t-1)})$$

$$z_2^{(t)} \sim p(z_2 \mid z_1^{(t)}, z_3^{(t-1)}, \dots, z_k^{(t-1)})$$

$$z_k^{(t)} \sim p(z_k \mid z_1^{(t)}, z_2^{(t)}, \dots, z_{k-1}^{(t)})$$

- ► There exists t_0 such that for $t > t_0$ it is guaranteed that $(z_1^{(t)}, z_2^{(t)}, \dots, z_k^{(t)}) \sim p(z_1, z_2, \dots, z_k)$
- To learn the theory behind this you'll need to take a course on Bayesian statistics (or just learn it on your own!¹)

¹https://doi.org/10.1080/00031305.1992.10475878□ > <♂ > < ⊇ > < ⊇ > ⊃ < ♂

- Fix initial values $(z_2^{(0)}, z_3^{(0)}, \dots, z_k^{(0)})$
- At iteration t, draw

$$z_1^{(t)} \sim p(z_1 \mid z_2^{(t-1)}, z_3^{(t-1)}, \dots, z_k^{(t-1)})$$

$$z_2^{(t)} \sim p(z_2 \mid z_1^{(t)}, z_3^{(t-1)}, \dots, z_k^{(t-1)})$$

$$z_k^{(t)} \sim p(z_k \mid z_1^{(t)}, z_2^{(t)}, \dots, z_{k-1}^{(t)})$$

• There exists t_0 such that for $t > t_0$ it is guaranteed that

$$(z_1^{(t)}, z_2^{(t)}, \ldots, z_k^{(t)}) \sim p(z_1, z_2, \ldots, z_k)$$

 To learn the theory behind this you'll need to take a course on Bayesian statistics (or just learn it on your own!¹)

Consider real-valued random variables X and Y having a joint distribution with density²

$$p_{X,Y}(x,y) = \exp\left\{ \begin{bmatrix} 1, x, x^2 \end{bmatrix} \begin{bmatrix} m_{00}, m_{01}, m_{02} \\ m_{10}, m_{11}, m_{12} \\ m_{20}, m_{21}, m_{22} \end{bmatrix} \begin{bmatrix} 1 \\ y \\ y^2 \end{bmatrix} \right\},\$$

where either

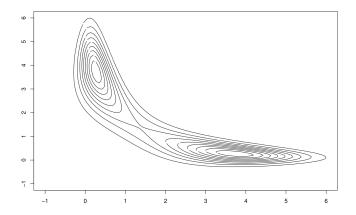
(a)
$$m_{22} = m_{21} = m_{12} = 0; m_{20}, m_{02} < 0; m_{11}^2 < 4m_{20}m_{02};$$

(b) $m_{22} < 0, 4m_{22}m_{02} > m_{12}^2, 4m_{22}m_{20} > m_{21}^2.$

 m_{00} is determined by the other m_{ij} 's so that $p_{X,Y}$ integrates to 1.

https://projecteuclid.org/download/pdf_1/euclid.ss/1009213728 🕨 🛓 🔗 🔍

²Distribution credited to Anil Kumar Bhattacharyya, who was a professor at the Indian Statistical Institute. See, e.g.,



◆□ → < 団 → < 茎 → < 茎 → < 茎 → < ≥ </p>
※ ○ へ ()
8/32

From $p_{X,Y}(x,y)$ it is easy to see that

$$p_{X|y}(x|y) \propto rac{1}{\sigma_X(y)} \exp\left\{-rac{[x-\mu_X(y)]^2}{2\sigma_X^2(y)}
ight\},$$

where

$$\mu_X(y) = -\frac{m_{10} + m_{11}y + m_{12}y^2}{2(m_{20} + m_{21}y + m_{22}y^2)},$$

and

$$\sigma_X^2(y) = -\frac{1}{2(m_{20} + m_{21}y + m_{22}y^2)}$$

And analogously, it is easy to see that

$$p_{Y|x}(y|x) \propto rac{1}{\sigma_Y(x)} \exp\left\{-rac{[y-\mu_Y(x)]^2}{2\sigma_Y^2(x)}
ight\},$$

where

$$\mu_{Y}(x) = -\frac{m_{01} + m_{11}x + m_{21}x^{2}}{2(m_{02} + m_{12}x + m_{22}x^{2})},$$

and

$$\sigma_Y^2(x) = -\frac{1}{2(m_{02} + m_{12}x + m_{22}x^2)}$$

- In fact, Bhattacharyya's distribution characterizes all bivariate distributions with normal conditionals³
- Gibbs sampler to draw from $p_{X,Y}$ is easy to implement! (R session 3)

³Arnold, Castillo and Sarabia (Statistical Science, 2001): https://projecteuclid.org/download/pdf_1/euclid.ss/1009213728 + (= +) = -) Q

For Bayesian inference we work with the posterior

$$p(\theta \mid \mathbf{z}) = \frac{L(\theta \mid \mathbf{z})p(\theta)}{\int L(\theta \mid \mathbf{z})p(\theta)d\theta}$$

This expression might not be available in closed form

• Computing functionals of interest $E[f(\theta) | \mathbf{z}]$ might be complicated

Idea: sample from p(θ | z) and evaluate functionals of interest via Monte Carlo, i.e., draw θ⁽¹⁾, θ⁽²⁾,...,θ^(m) ∼ p(θ | z) and approximate

$$E[f(\theta) \mid \mathbf{z}] \approx \frac{1}{m} \sum_{t=1}^{m} f(\theta^{(t)})$$

▶ Problem: we might not know how to sample from $p(\theta \mid z)$

For Bayesian inference we work with the posterior

$$p(\theta \mid \mathbf{z}) = \frac{L(\theta \mid \mathbf{z})p(\theta)}{\int L(\theta \mid \mathbf{z})p(\theta)d\theta}$$

- This expression might not be available in closed form
- Computing functionals of interest $E[f(\theta) | \mathbf{z}]$ might be complicated
- Idea: sample from p(θ | z) and evaluate functionals of interest via Monte Carlo, i.e., draw θ⁽¹⁾, θ⁽²⁾,...,θ^(m) ∼ p(θ | z) and approximate

$$E[f(\theta) \mid \mathbf{z}] \approx \frac{1}{m} \sum_{t=1}^{m} f(\theta^{(t)})$$

▶ Problem: we might not know how to sample from $p(\theta \mid \mathbf{z})$

For Bayesian inference we work with the posterior

$$p(\theta \mid \mathbf{z}) = \frac{L(\theta \mid \mathbf{z})p(\theta)}{\int L(\theta \mid \mathbf{z})p(\theta)d\theta}$$

- This expression might not be available in closed form
- Computing functionals of interest $E[f(\theta) | \mathbf{z}]$ might be complicated
- Idea: sample from p(θ | z) and evaluate functionals of interest via Monte Carlo, i.e., draw θ⁽¹⁾, θ⁽²⁾,...,θ^(m) ∼ p(θ | z) and approximate

$$E[f(\theta) \mid \mathbf{z}] \approx \frac{1}{m} \sum_{t=1}^{m} f(\theta^{(t)})$$

▶ Problem: we might not know how to sample from $p(\theta \mid \mathbf{z})$

• Say
$$\theta = (\theta_1, \ldots, \theta_d)$$

Say you can sample from each of the conditionals

$$p(\theta_1 \mid \theta_2, \dots, \theta_d, \mathbf{z})$$

$$\vdots$$

$$p(\theta_d \mid \theta_1, \dots, \theta_{d-1}, \mathbf{z})$$

Then a Gibbs sampler can be implemented to obtain draws

$$\theta^{(t)} = (\theta_1^{(t)}, \theta_2^{(t)}, \dots, \theta_d^{(t)}) \sim p(\theta \mid \mathbf{z}), \quad t = 1, \dots, m$$

and approximate

$$E[f(\theta) \mid \mathbf{z}] \approx \frac{1}{m} \sum_{t=1}^{m} f(\theta^{(t)})$$

• Say
$$\theta = (\theta_1, \dots, \theta_d)$$

Say you can sample from each of the conditionals

$$p(\theta_1 \mid \theta_2, \dots, \theta_d, \mathbf{z})$$

$$\vdots$$

$$p(\theta_d \mid \theta_1, \dots, \theta_{d-1}, \mathbf{z})$$

> Then a Gibbs sampler can be implemented to obtain draws

$$\theta^{(t)} = (\theta_1^{(t)}, \theta_2^{(t)}, \dots, \theta_d^{(t)}) \sim p(\theta \mid \mathbf{z}), \quad t = 1, \dots, m$$

and approximate

$$E[f(\theta) \mid \mathbf{z}] \approx \frac{1}{m} \sum_{t=1}^{m} f(\theta^{(t)})$$

Consider the changepoint detection problem presented by Carlin, Gelfand and Smith $(1992)^4$

The data are counts generated over discrete time as

$$X_s \sim \text{Poisson}(\mu), \text{ if } s = 1, \dots, \tau$$

 $X_s \sim \text{Poisson}(\lambda), \text{ if } s = \tau + 1, \dots, T$

where τ is unknown

• The vector of parameters is
$$heta = (\mu, \lambda, au)$$

The likelihood function is given by

$$L(\mu, \lambda, \tau \mid x_1, \dots, x_T) = \prod_{s \leq \tau} \frac{\mu^{x_s} e^{-\mu}}{x_s!} \prod_{\tau < s \leq T} \frac{\lambda^{x_s} e^{-\lambda}}{x_s!}$$

Consider the changepoint detection problem presented by Carlin, Gelfand and Smith $(1992)^4$

The data are counts generated over discrete time as

$$X_s \sim \text{Poisson}(\mu), \text{ if } s = 1, \dots, \tau$$

 $X_s \sim \text{Poisson}(\lambda), \text{ if } s = \tau + 1, \dots, T$

where τ is unknown

- The vector of parameters is $\theta = (\mu, \lambda, \tau)$
- The likelihood function is given by

$$L(\mu,\lambda,\tau \mid x_1,\ldots,x_T) = \prod_{s \leq \tau} \frac{\mu^{x_s} e^{-\mu}}{x_s!} \prod_{\tau < s \leq T} \frac{\lambda^{x_s} e^{-\lambda}}{x_s!}$$

Consider the independent priors

- $\mu \sim \mathsf{Gamma}(a_1, b_1)$
- $\lambda \sim \text{Gamma}(a_2, b_2)$
- $\tau \sim \text{Uniform}(\{1, \ldots, T\})$

► Leading to the posterior (HW3) $p(\mu, \lambda, \tau \mid x_1, \dots, x_T) \propto \mu^{a_1 + \sum_{s \leq \tau} x_s - 1} e^{-\mu(\tau + b_1)}$ $\times \lambda^{a_2 + \sum_{\tau < s < \tau} x_s - 1} e^{-\lambda(\tau - \tau + b_2)}$

• Jointly sampling μ, λ, τ doesn't seem to be easy

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ Q (~ 15/32

- Consider the independent priors
 - $\mu \sim \text{Gamma}(a_1, b_1)$
 - $\lambda \sim \text{Gamma}(a_2, b_2)$
 - $\tau \sim \text{Uniform}(\{1, \ldots, T\})$
- Leading to the posterior (HW3)

$$p(\mu, \lambda, \tau \mid x_1, \dots, x_T) \propto \mu^{a_1 + \sum_{s \leq \tau} x_s - 1} e^{-\mu(\tau + b_1)} \\ \times \lambda^{a_2 + \sum_{\tau < s \leq \tau} x_s - 1} e^{-\lambda(\tau - \tau + b_2)}$$

Jointly sampling μ, λ, τ doesn't seem to be easy

32

- Consider the independent priors
 - $\mu \sim \text{Gamma}(a_1, b_1)$
 - $\lambda \sim \text{Gamma}(a_2, b_2)$
 - $\tau \sim \text{Uniform}(\{1, \ldots, T\})$
- Leading to the posterior (HW3)

$$p(\mu, \lambda, \tau \mid x_1, \dots, x_T) \propto \mu^{a_1 + \sum_{s \leq \tau} x_s - 1} e^{-\mu(\tau + b_1)} \\ \times \lambda^{a_2 + \sum_{\tau < s \leq \tau} x_s - 1} e^{-\lambda(\tau - \tau + b_2)}$$

・ロン ・四 と ・ 日 と ・ 日 ・

 \blacktriangleright Jointly sampling μ,λ,τ doesn't seem to be easy

However, the posterior conditionals are easy to sample from

$$\mu \mid \lambda, \tau, x_{1}, \dots, x_{T} \sim \mathsf{Gamma}(a_{1} + \sum_{s \leq \tau} x_{s}, \tau + b_{1})$$

$$\lambda \mid \mu, \tau, x_{1}, \dots, x_{T} \sim \mathsf{Gamma}(a_{2} + \sum_{\tau < s \leq T} x_{s}, T - \tau + b_{2})$$

$$\tau \mid \mu, \lambda, x_{1}, \dots, x_{T} \sim \mathsf{Categorical}(q_{1}, \dots, q_{T})$$
where $q_{t} \propto L(\mu, \lambda, \tau = t \mid x_{1}, \dots, x_{T})$

$$\propto e^{(\lambda - \mu)t + (\log \mu - \log \lambda) \sum_{s \leq t} x_{s}}$$

HW3: confirm that these are indeed the correct conditionals, and implement the corresponding Gibbs sampler

However, the posterior conditionals are easy to sample from

$$\mu \mid \lambda, \tau, x_{1}, \dots, x_{T} \sim \mathsf{Gamma}(a_{1} + \sum_{s \leq \tau} x_{s}, \tau + b_{1})$$

$$\lambda \mid \mu, \tau, x_{1}, \dots, x_{T} \sim \mathsf{Gamma}(a_{2} + \sum_{\tau < s \leq T} x_{s}, T - \tau + b_{2})$$

$$\tau \mid \mu, \lambda, x_{1}, \dots, x_{T} \sim \mathsf{Categorical}(q_{1}, \dots, q_{T})$$
where $q_{t} \propto L(\mu, \lambda, \tau = t \mid x_{1}, \dots, x_{T})$

$$\propto e^{(\lambda - \mu)t + (\log \mu - \log \lambda) \sum_{s \leq t} x}$$

HW3: confirm that these are indeed the correct conditionals, and implement the corresponding Gibbs sampler

However, the posterior conditionals are easy to sample from

HW3: confirm that these are indeed the correct conditionals, and

implement the corresponding Gibbs sampler

However, the posterior conditionals are easy to sample from

$$\mu \mid \lambda, \tau, x_{1}, \dots, x_{T} \sim \mathsf{Gamma}(a_{1} + \sum_{s \leq \tau} x_{s}, \tau + b_{1})$$

$$\lambda \mid \mu, \tau, x_{1}, \dots, x_{T} \sim \mathsf{Gamma}(a_{2} + \sum_{\tau < s \leq T} x_{s}, T - \tau + b_{2})$$

$$\tau \mid \mu, \lambda, x_{1}, \dots, x_{T} \sim \mathsf{Categorical}(q_{1}, \dots, q_{T})$$
where $q_{t} \propto \mathcal{L}(\mu, \lambda, \tau = t \mid x_{1}, \dots, x_{T})$

$$\propto e^{(\lambda - \mu)t + (\log \mu - \log \lambda) \sum_{s \leq t} x_{s}}$$

HW3: confirm that these are indeed the correct conditionals, and implement the corresponding Gibbs sampler

• Starting point: initial value $\theta^{(0)}$ should ideally be chosen in a high probability region of the posterior, but this is not always easy

- Burn-in period: what if your θ⁽⁰⁾ was far from the high probability region?: run the sampler for m iterations, discard the initial m₀ < m</p>
- ▶ *Trace plots*: to choose *m* and *m*₀ you can plot each entry of $\theta^{(t)} = (\theta_1^{(t)}, \ldots, \theta_d^{(t)})$ versus the iteration number *t*: keep the draws after the "chain has converged"

We'll cover these and other diagnostics in R session 3

- Starting point: initial value θ⁽⁰⁾ should ideally be chosen in a high probability region of the posterior, but this is not always easy
- Burn-in period: what if your θ⁽⁰⁾ was far from the high probability region?: run the sampler for m iterations, discard the initial m₀ < m</p>
- ▶ Trace plots: to choose m and m_0 you can plot each entry of $\theta^{(t)} = (\theta_1^{(t)}, \ldots, \theta_d^{(t)})$ versus the iteration number t: keep the draws after the "chain has converged"
- We'll cover these and other diagnostics in R session 3

- Starting point: initial value θ⁽⁰⁾ should ideally be chosen in a high probability region of the posterior, but this is not always easy
- ▶ Burn-in period: what if your $\theta^{(0)}$ was far from the high probability region?: run the sampler for *m* iterations, discard the initial $m_0 < m$
- Trace plots: to choose m and m_0 you can plot each entry of $\theta^{(t)} = (\theta_1^{(t)}, \dots, \theta_d^{(t)})$ versus the iteration number t: keep the draws after the "chain has converged"

We'll cover these and other diagnostics in R session 3

- Starting point: initial value θ⁽⁰⁾ should ideally be chosen in a high probability region of the posterior, but this is not always easy
- ▶ Burn-in period: what if your $\theta^{(0)}$ was far from the high probability region?: run the sampler for *m* iterations, discard the initial $m_0 < m$
- Trace plots: to choose m and m_0 you can plot each entry of $\theta^{(t)} = (\theta_1^{(t)}, \dots, \theta_d^{(t)})$ versus the iteration number t: keep the draws after the "chain has converged"
- ▶ We'll cover these and other diagnostics in R session 3

Bayesian Inference with Missing Data Under Ignorability

Data Augmentation

Missing Data and Bayes

With missing data, things get complicated

$$L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) = \prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r}_{i})}} p(r_{i} \mid z_{i}, \psi) p(z_{i} \mid \theta) \, dz_{i(\bar{r}_{i})}$$

• Under a Bayesian approach, in general we need to obtain $p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \propto L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi)$

Missing Data and Bayes

With missing data, things get complicated

$$L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) = \prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r}_{i})}} p(r_{i} \mid z_{i}, \psi) p(z_{i} \mid \theta) \, dz_{i(\bar{r}_{i})}$$

> Under a Bayesian approach, in general we need to obtain

$$p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \propto L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi)$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

- Remember: for computing MLEs, life is easier under *ignorability* (MAR + separability)
- Is it the same for Bayesian inference?

MAR + separability lead to the observed-data likelihood function

$$L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \stackrel{\text{MAR}}{=} \underbrace{\left[\prod_{i=1}^{n} p(r_i \mid z_{i(r_i)}, \psi)\right]}_{p(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi)} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r}_i)}} p(z_i \mid \theta) \, dz_{i(\bar{r}_i)}\right]}_{L_{obs}(\theta \mid \mathbf{z}_{(r)})}$$

Under a Bayesian approach we need to obtain

 $p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \propto L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi),$

but typically only heta is of interest, while ψ is a nuisance

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- Remember: for computing MLEs, life is easier under *ignorability* (MAR + separability)
- Is it the same for Bayesian inference?
- ▶ MAR + separability lead to the observed-data likelihood function

$$L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \stackrel{\text{MAR}}{=} \underbrace{\left[\prod_{i=1}^{n} p(r_i \mid z_{i(r_i)}, \psi)\right]}_{p(\mathbf{r} \mid \mathbf{z}_{(r)}, \psi)} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r}_i)}} p(z_i \mid \theta) \, dz_{i(\bar{r}_i)}\right]}_{L_{obs}(\theta \mid \mathbf{z}_{(r)})}$$

Under a Bayesian approach we need to obtain

 $p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \propto L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi),$

but typically only heta is of interest, while ψ is a nuisance

(ロ) (部) (E) (E) (E) (000)

- Remember: for computing MLEs, life is easier under *ignorability* (MAR + separability)
- Is it the same for Bayesian inference?
- MAR + separability lead to the observed-data likelihood function

$$L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \stackrel{\text{MAR}}{=} \underbrace{\left[\prod_{i=1}^{n} p(r_i \mid z_{i(r_i)}, \psi)\right]}_{p(\mathbf{r} \mid \mathbf{z}_{(r_i)}, \psi)} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r}_i)}} p(z_i \mid \theta) \, dz_{i(\bar{r}_i)}\right]}_{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})}$$

Under a Bayesian approach we need to obtain

$$p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \propto L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi),$$

but typically only θ is of interest, while ψ is a nuisance

Under a Bayesian approach, nuisance parameters are integrated over

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) = \int p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) d\psi$$
$$= \frac{\int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\psi}{\int \int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\theta d\psi}$$
$$\underset{\prod \in \mathbf{R}}{\overset{\text{MAR}}{=}} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi d\theta}$$

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \stackrel{\text{MAR}}{=} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)d\theta} \frac{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}$$
$$\stackrel{\text{MAR}}{\propto} L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)$$
$$\stackrel{\text{MAR}}{\propto} p(\theta \mid \mathbf{z}_{(\mathbf{r})})$$

- Therefore, *ignorability* for Bayesian inference requires MAR + separability + θ ⊥⊥ ψ a priori
- ► Even then, how to obtain or sample from $p(\partial \square \dot{z}_{(r)})^{*} \stackrel{*}{\Longrightarrow} \stackrel{*}{\Longrightarrow} \stackrel{*}{\Rightarrow} \stackrel{}}{\Rightarrow} \stackrel{*}{\Rightarrow} \stackrel{}}{\rightarrow} \stackrel{*}{\rightarrow} \stackrel{}}{\rightarrow} \stackrel{}}{\rightarrow} \stackrel{}}{\rightarrow} \stackrel{}}{\rightarrow} \stackrel{}}{\rightarrow} \stackrel{}}{\rightarrow} \stackrel{}$

Under a Bayesian approach, nuisance parameters are integrated over

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) = \int p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) d\psi$$

=
$$\frac{\int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\psi}{\int \int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\theta d\psi}$$

$$\underset{=}{\overset{\text{MAR}}{=}} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi d\theta}$$

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \stackrel{\text{MAR}}{=} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)d\theta} \frac{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}$$
$$\stackrel{\text{MAR}}{\propto} L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)$$
$$\stackrel{\text{MAR}}{\propto} p(\theta \mid \mathbf{z}_{(\mathbf{r})})$$

- Therefore, *ignorability* for Bayesian inference requires MAR + separability + θ ⊥⊥ ψ a priori

Under a Bayesian approach, nuisance parameters are integrated over

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) = \int p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) d\psi$$

=
$$\frac{\int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\psi}{\int \int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\theta d\psi}$$

$$\underset{=}{\overset{\text{MAR}}{=}} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi d\theta}$$

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \stackrel{\text{MAR}}{=} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)d\theta} \frac{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}$$
$$\stackrel{\text{MAR}}{\propto} L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)$$
$$\stackrel{\text{MAR}}{\propto} p(\theta \mid \mathbf{z}_{(\mathbf{r})})$$

- Therefore, *ignorability* for Bayesian inference requires MAR + separability + θ ⊥ ψ a priori
- ► Even then, how to obtain or sample from $p(\partial \square \dot{z}_{(r)})^{*} \stackrel{*}{\Longrightarrow} \overset{*}{\Longrightarrow} \overset{*}{\Rightarrow} \overset{*}{\to} \overset{*}{\Rightarrow} \overset{*}{\to} \overset{*}{\overset} \overset{*}{\to} \overset{*}{\to} \overset{*}{\to} \overset{*}{\overset} \overset{*}{\to} \overset{*}{\to} \overset{*}{\to} \overset{*}{\overset} \overset{*}{\to} \overset{*$

Under a Bayesian approach, nuisance parameters are integrated over

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) = \int p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) d\psi$$

=
$$\frac{\int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\psi}{\int \int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\theta d\psi}$$

$$\underset{=}{\overset{\text{MAR}}{=}} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi d\theta}$$

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \stackrel{\text{MAR}}{=} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)d\theta} \frac{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}$$
$$\stackrel{\text{MAR}}{\propto} L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)$$
$$\stackrel{\text{MAR}}{\propto} p(\theta \mid \mathbf{z}_{(\mathbf{r})})$$

- Therefore, *ignorability* for Bayesian inference requires MAR + separability + θ ⊥⊥ ψ a priori
- ► Even then, how to obtain or sample from $p(\partial \square \dot{z}_{(r)})^{*} \stackrel{*}{\Longrightarrow} \overset{*}{\Longrightarrow} \overset{*}{\Rightarrow} \overset{*}{\to} \overset{*}{\Rightarrow} \overset{*}{\to} \overset{*}{\overset} \overset{*}{\to} \overset{*}{\to} \overset{*}{\to} \overset{*}{\overset} \overset{*}{\to} \overset{*}{\to} \overset{*}{\to} \overset{*}{\overset} \overset{*}{\to} \overset{*$

Under a Bayesian approach, nuisance parameters are integrated over

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) = \int p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) d\psi$$

=
$$\frac{\int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\psi}{\int \int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\theta d\psi}$$

$$\underset{=}{\overset{\text{MAR}}{=}} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi d\theta}$$

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \stackrel{\text{MAR}}{=} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)d\theta} \frac{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}$$
$$\stackrel{\text{MAR}}{\propto} L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)$$
$$\stackrel{\text{MAR}}{\propto} p(\theta \mid \mathbf{z}_{(\mathbf{r})})$$

- Therefore, *ignorability* for Bayesian inference requires MAR + separability + θ ⊥⊥ ψ a priori
- ► Even then, how to obtain or sample from $p(\theta \parallel \dot{z}_{(r)})^{\circ}$ (z) (z)

Under a Bayesian approach, nuisance parameters are integrated over

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) = \int p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) d\psi$$

=
$$\frac{\int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\psi}{\int \int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\theta d\psi}$$

$$\underset{=}{\overset{\text{MAR}}{=}} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi d\theta}$$

 \blacktriangleright If additionally, $\theta \perp\!\!\!\perp \psi$ a priori

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \stackrel{\text{MAR}}{=} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)d\theta} \frac{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}$$
$$\stackrel{\text{MAR}}{\propto} L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)$$
$$\stackrel{\text{MAR}}{\propto} p(\theta \mid \mathbf{z}_{(\mathbf{r})})$$

 Therefore, *ignorability* for Bayesian inference requires MAR + separability + θ ⊥⊥ ψ a priori

► Even then, how to obtain or sample from $p(\vartheta \parallel z'_{(r)})^{*} \stackrel{*}{\longrightarrow} \overset{*}{\longrightarrow} \overset{*}{\overset}{\overset{*}{\longrightarrow} \overset{*}{\longrightarrow} \overset{*}{\overset}{\overset{*}{\longrightarrow} \overset{*}{\overset}{\overset{*}{\longrightarrow} \overset{*}{\overset}{\overset{*}{\overset}{\overset{*}{\overset}{\overset{*}{\overset}{\overset{*}{\overset}{\overset{*}{\overset}{\overset{*}{$

Under a Bayesian approach, nuisance parameters are integrated over

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) = \int p(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) d\psi$$

=
$$\frac{\int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\psi}{\int \int L_{obs}(\theta, \psi \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) p(\theta, \psi) d\theta d\psi}$$

$$\underset{=}{\overset{\text{MAR}}{=}} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) \int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi) p(\theta, \psi) d\psi d\theta}$$

$$p(\theta \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{r}) \stackrel{\text{MAR}}{=} \frac{L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)}{\int L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)d\theta} \frac{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}{\int p(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \psi)p(\psi)d\psi}$$
$$\stackrel{\text{MAR}}{\propto} L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})p(\theta)$$
$$\stackrel{\text{MAR}}{\propto} p(\theta \mid \mathbf{z}_{(\mathbf{r})})$$

- Therefore, *ignorability* for Bayesian inference requires MAR + separability + θ ⊥⊥ ψ a priori
- Even then, how to obtain or sample from $p(\hat{\theta} | \mathbf{z}_{(\mathbf{r})})$?

Outline

Gibbs Sampling

Bayesian Inference with Missing Data Under Ignorability

Data Augmentation

Main idea, say:

We want to sample from posterior

 $p(\theta \mid y) \propto p(y \mid \theta)p(\theta),$

but this is difficult

It is easy to sample from

 $p(\theta \mid y, x) \propto p(x, y \mid \theta) p(\theta)$

for some unobserved x

It is easy to sample from

 $p(x \mid y, \theta)$

Main idea, say:

We want to sample from posterior

 $p(\theta \mid y) \propto p(y \mid \theta)p(\theta),$

but this is difficult

It is easy to sample from

 $p(\theta \mid y, x) \propto p(x, y \mid \theta) p(\theta)$

for some unobserved x

It is easy to sample from

 $p(x \mid y, \theta)$

23 / 32

イロン イロン イヨン イヨン 三日

Main idea, say:

We want to sample from posterior

```
p(\theta \mid y) \propto p(y \mid \theta)p(\theta),
```

but this is difficult

It is easy to sample from

$$p(\theta \mid y, x) \propto p(x, y \mid \theta) p(\theta)$$

for some unobserved x

It is easy to sample from

 $p(x \mid y, \theta)$

• Start from $x^{(0)}$ (or from $\theta^{(0)}$ and switch the steps)

At iteration t, draw

$$egin{aligned} & heta^{(t)} \sim p(heta \mid y, x^{(t-1)}) \ & x^{(t)} \sim p(x \mid y, heta^{(t)}) \end{aligned}$$

► There exists t_0 such that for $t > t_0$ it is guaranteed that $(x^{(t)}, \theta^{(t)}) \sim p(x, \theta \mid y)$

and

$$heta^{(t)} \sim p(heta \mid y)$$

24 / 32

Generally applicable, not only to missing data problems!

Looks very much like an application of Gibbs sampling, what's special?

• Start from $x^{(0)}$ (or from $\theta^{(0)}$ and switch the steps)

At iteration t, draw

$$egin{aligned} & heta^{(t)} \sim p(heta \mid y, x^{(t-1)}) \ & x^{(t)} \sim p(x \mid y, heta^{(t)}) \end{aligned}$$

▶ There exists t_0 such that for $t > t_0$ it is guaranteed that $(x^{(t)}, \theta^{(t)}) \sim p(x, \theta \mid y)$ and

$$\theta^{(t)} \sim p(\theta \mid y)$$

24 / 32

Generally applicable, not only to missing data problems!

Looks very much like an application of Gibbs sampling, what's special?

• Start from $x^{(0)}$ (or from $\theta^{(0)}$ and switch the steps)

► At iteration *t*, draw

$$egin{aligned} & heta^{(t)} \sim p(heta \mid y, x^{(t-1)}) \ & x^{(t)} \sim p(x \mid y, heta^{(t)}) \end{aligned}$$

▶ There exists t_0 such that for $t > t_0$ it is guaranteed that $(x^{(t)}, \theta^{(t)}) \sim p(x, \theta \mid y)$ and

$$\theta^{(t)} \sim p(\theta \mid y)$$

Generally applicable, not only to missing data problems!

Looks very much like an application of Gibbs sampling, what's special?

▶ 1977: Dempster, Laird & Rubin popularize the EM algorithm

1984: Geman & Geman introduce the Gibbs sampler for image processing – ignored in the statistics literature

1987: Tanner & Wong introduce the original Data Augmentation paper, as the Bayesian analog of the EM algorithm – not quite what we presented as DA above

 1990: Gelfand & Smith introduce the Gibbs sampler in the statistics literature and show its connection with DA – nowadays we see DA as an application of Gibbs sampling

2001: van Dyk & Meng publish "The Art of Data Augmentation" as a comprehensive view of different DA-type algorithms

- ▶ 1977: Dempster, Laird & Rubin popularize the EM algorithm
- 1984: Geman & Geman introduce the Gibbs sampler for image processing – ignored in the statistics literature
- 1987: Tanner & Wong introduce the original Data Augmentation paper, as the Bayesian analog of the EM algorithm – not quite what we presented as DA above
- 1990: Gelfand & Smith introduce the Gibbs sampler in the statistics literature and show its connection with DA – nowadays we see DA as an application of Gibbs sampling
- 2001: van Dyk & Meng publish "The Art of Data Augmentation" as a comprehensive view of different DA-type algorithms

- ▶ 1977: Dempster, Laird & Rubin popularize the EM algorithm
- 1984: Geman & Geman introduce the Gibbs sampler for image processing – ignored in the statistics literature
- ▶ 1987: Tanner & Wong introduce the original Data Augmentation paper, as the Bayesian analog of the EM algorithm – not quite what we presented as DA above
- 1990: Gelfand & Smith introduce the Gibbs sampler in the statistics literature and show its connection with DA – nowadays we see DA as an application of Gibbs sampling
- 2001: van Dyk & Meng publish "The Art of Data Augmentation" as a comprehensive view of different DA-type algorithms

- ▶ 1977: Dempster, Laird & Rubin popularize the EM algorithm
- 1984: Geman & Geman introduce the Gibbs sampler for image processing – ignored in the statistics literature
- ▶ 1987: Tanner & Wong introduce the original Data Augmentation paper, as the Bayesian analog of the EM algorithm – not quite what we presented as DA above
- 1990: Gelfand & Smith introduce the Gibbs sampler in the statistics literature and show its connection with DA – nowadays we see DA as an application of Gibbs sampling
- 2001: van Dyk & Meng publish "The Art of Data Augmentation" as a comprehensive view of different DA-type algorithms

- ▶ 1977: Dempster, Laird & Rubin popularize the EM algorithm
- 1984: Geman & Geman introduce the Gibbs sampler for image processing – ignored in the statistics literature
- ▶ 1987: Tanner & Wong introduce the original Data Augmentation paper, as the Bayesian analog of the EM algorithm – not quite what we presented as DA above
- 1990: Gelfand & Smith introduce the Gibbs sampler in the statistics literature and show its connection with DA – nowadays we see DA as an application of Gibbs sampling
- 2001: van Dyk & Meng publish "The Art of Data Augmentation" as a comprehensive view of different DA-type algorithms

Consider the full-data likelihood

$$L(\theta, \psi \mid \mathbf{z}, \mathbf{r}) = \prod_{i=1}^{n} p(r_i \mid z_i, \psi) p(z_i \mid \theta)$$

$$p(\theta, \psi \mid \mathbf{z}, \mathbf{r}) \propto L(\theta, \psi \mid \mathbf{z}, \mathbf{r}) p(\theta, \psi)$$

Say you can sample from

$$p(z_{i(\bar{r}_i)} \mid z_{i(r_i)}, r_i, \theta, \psi) \propto p(r_i \mid z_i, \psi) p(z_i \mid \theta)$$

for i = 1, ..., n

If this is the case, you can iteratively sample from these to run a DA algorithm!

Consider the full-data likelihood

$$L(\theta, \psi \mid \mathbf{z}, \mathbf{r}) = \prod_{i=1}^{n} p(r_i \mid z_i, \psi) p(z_i \mid \theta)$$

$$p(\theta, \psi \mid \mathbf{z}, \mathbf{r}) \propto L(\theta, \psi \mid \mathbf{z}, \mathbf{r}) p(\theta, \psi)$$

$$p(z_{i(\bar{r}_i)} \mid z_{i(r_i)}, r_i, \theta, \psi) \propto p(r_i \mid z_i, \psi) p(z_i \mid \theta)$$

for i = 1, ..., n

If this is the case, you can iteratively sample from these to run a DA algorithm!

Consider the full-data likelihood

$$L(\theta, \psi \mid \mathbf{z}, \mathbf{r}) = \prod_{i=1}^{n} p(r_i \mid z_i, \psi) p(z_i \mid \theta)$$

$$p(\theta, \psi \mid \mathbf{z}, \mathbf{r}) \propto L(\theta, \psi \mid \mathbf{z}, \mathbf{r}) p(\theta, \psi)$$

for *i*

$$p(z_{i(\bar{r}_i)} \mid z_{i(r_i)}, r_i, \theta, \psi) \propto p(r_i \mid z_i, \psi) p(z_i \mid \theta)$$
$$= 1, \dots, n$$

If this is the case, you can iteratively sample from these to run a DA algorithm!

Consider the full-data likelihood

$$L(\theta, \psi \mid \mathbf{z}, \mathbf{r}) = \prod_{i=1}^{n} p(r_i \mid z_i, \psi) p(z_i \mid \theta)$$

$$p(\theta, \psi \mid \mathbf{z}, \mathbf{r}) \propto L(\theta, \psi \mid \mathbf{z}, \mathbf{r}) p(\theta, \psi)$$

$$p(z_{i(\bar{r}_i)} \mid z_{i(r_i)}, r_i, \theta, \psi) \propto p(r_i \mid z_i, \psi)p(z_i \mid \theta)$$

for i = 1, ..., n

If this is the case, you can iteratively sample from these to run a DA algorithm!

• Typically, sampling from $p(\theta, \psi \mid \mathbf{z}, \mathbf{r})$ is not easy

• Say
$$\theta = (\theta_1, \dots, \theta_{d_1})$$
 and $\psi = (\psi_1, \dots, \psi_{d_2})$

Instead of sampling (θ, ψ) jointly, we might have to sample sequentially from the conditionals

$$p(\theta_1 \mid \theta_2, \dots, \theta_{d_1}, \psi, \mathbf{z}, \mathbf{r})$$

$$\vdots$$

$$p(\theta_{d_1} \mid \theta_1, \dots, \theta_{d_1-1}, \psi, \mathbf{z}, \mathbf{r})$$

$$p(\psi_1 \mid \psi_2, \dots, \psi_{d_2}, \theta, \mathbf{z}, \mathbf{r})$$

$$\vdots$$

$$p(\psi_{d_2} \mid \psi_1, \dots, \psi_{d_2-1}, \theta, \mathbf{z}, \mathbf{r})$$

Or, we might be able to sample from

$$p(\theta \mid \psi, \mathbf{z}, \mathbf{r})$$
$$p(\psi \mid \theta, \mathbf{z}, \mathbf{r})$$

• Typically, sampling from $p(\theta, \psi \mid \mathbf{z}, \mathbf{r})$ is not easy

• Say
$$\theta = (\theta_1, \dots, \theta_{d_1})$$
 and $\psi = (\psi_1, \dots, \psi_{d_2})$

 Instead of sampling (θ, ψ) jointly, we might have to sample sequentially from the conditionals

$$p(\theta_1 \mid \theta_2, \dots, \theta_{d_1}, \psi, \mathbf{z}, \mathbf{r})$$

$$\vdots$$

$$p(\theta_{d_1} \mid \theta_1, \dots, \theta_{d_1-1}, \psi, \mathbf{z}, \mathbf{r})$$

$$p(\psi_1 \mid \psi_2, \dots, \psi_{d_2}, \theta, \mathbf{z}, \mathbf{r})$$

$$\vdots$$

$$p(\psi_{d_1} \mid \psi_1, \dots, \psi_{d_2-1}, \theta, \mathbf{z}, \mathbf{r})$$

Or, we might be able to sample from

$$p(\theta \mid \psi, \mathbf{z}, \mathbf{r})$$
$$p(\psi \mid \theta, \mathbf{z}, \mathbf{r})$$

• Typically, sampling from $p(\theta, \psi \mid \mathbf{z}, \mathbf{r})$ is not easy

• Say
$$\theta = (\theta_1, \dots, \theta_{d_1})$$
 and $\psi = (\psi_1, \dots, \psi_{d_2})$

 Instead of sampling (θ, ψ) jointly, we might have to sample sequentially from the conditionals

$$p(\theta_1 \mid \theta_2, \dots, \theta_{d_1}, \psi, \mathbf{z}, \mathbf{r})$$

$$\vdots$$

$$p(\theta_{d_1} \mid \theta_1, \dots, \theta_{d_1-1}, \psi, \mathbf{z}, \mathbf{r})$$

$$p(\psi_1 \mid \psi_2, \dots, \psi_{d_2}, \theta, \mathbf{z}, \mathbf{r})$$

$$\vdots$$

$$p(\psi_{d_2} \mid \psi_1, \dots, \psi_{d_2-1}, \theta, \mathbf{z}, \mathbf{r})$$

Or, we might be able to sample from

$$p(\theta \mid \psi, \mathbf{z}, \mathbf{r})$$
$$p(\psi \mid \theta, \mathbf{z}, \mathbf{r})$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

• Typically, sampling from $p(\theta, \psi \mid \mathbf{z}, \mathbf{r})$ is not easy

• Say
$$\theta = (\theta_1, \dots, \theta_{d_1})$$
 and $\psi = (\psi_1, \dots, \psi_{d_2})$

 Instead of sampling (θ, ψ) jointly, we might have to sample sequentially from the conditionals

$$p(\theta_1 \mid \theta_2, \dots, \theta_{d_1}, \psi, \mathbf{z}, \mathbf{r})$$

$$\vdots$$

$$p(\theta_{d_1} \mid \theta_1, \dots, \theta_{d_1-1}, \psi, \mathbf{z}, \mathbf{r})$$

$$p(\psi_1 \mid \psi_2, \dots, \psi_{d_2}, \theta, \mathbf{z}, \mathbf{r})$$

$$\vdots$$

$$p(\psi_{d_2} \mid \psi_1, \dots, \psi_{d_2-1}, \theta, \mathbf{z}, \mathbf{r})$$

Or, we might be able to sample from

$$p(\theta \mid \psi, \mathbf{z}, \mathbf{r})$$

$$p(\psi \mid \theta, \mathbf{z}, \mathbf{r})$$

$$(\Box \mapsto \langle \Box \rangle \land \exists \rangle \land \forall \exists z \in \mathbb{R}$$

Even under ignorability, the integrals in $L_{obs}(\theta \mid \mathbf{z}_{(r)})$ complicate things

Consider the full-data likelihood for the study variables only

$$L(\theta \mid \mathbf{z}) = \prod_{i=1}^{n} p(z_i \mid \theta)$$

Say you can sample from

 $p(\theta \mid \mathbf{z}) \propto L(\theta \mid \mathbf{z})p(\theta)$

or you can sample from

$$p(\theta_1 \mid \theta_2, \dots, \theta_{d_1}, \mathbf{z})$$

$$\vdots$$

$$p(\theta_{d_1} \mid \theta_1, \dots, \theta_{d_1-1}, \mathbf{z})$$

Then you can implement a DA algorithm under igf おおが計り!* き、き うへの 28/32

Even under ignorability, the integrals in $L_{obs}(\theta \mid \mathbf{z}_{(r)})$ complicate things

Consider the full-data likelihood for the study variables only

$$L(\theta \mid \mathbf{z}) = \prod_{i=1}^{n} p(z_i \mid \theta)$$

Say you can sample from

 $p(\theta \mid \mathbf{z}) \propto L(\theta \mid \mathbf{z})p(\theta)$

or you can sample from

$$p(\theta_1 \mid \theta_2, \dots, \theta_{d_1}, \mathbf{z})$$

$$\vdots$$

$$p(\theta_{d_1} \mid \theta_1, \dots, \theta_{d_1-1}, \mathbf{z})$$

Say you can sample for i = 1, ..., n from

 $p(z_{i(\bar{r}_i)} \mid z_{i(r_i)}, \theta)$

Then you can implement a DA algorithm under igf おおお書 シュロ 28/32

Even under ignorability, the integrals in $L_{obs}(\theta \mid \mathbf{z}_{(r)})$ complicate things

Consider the full-data likelihood for the study variables only

$$L(\theta \mid \mathbf{z}) = \prod_{i=1}^{n} p(z_i \mid \theta)$$

Say you can sample from

$$p(\theta \mid \mathbf{z}) \propto L(\theta \mid \mathbf{z})p(\theta)$$

or you can sample from

$$p(heta_1 \mid heta_2, \dots, heta_{d_1}, \mathbf{z})$$

 \vdots
 $p(heta_{d_1} \mid heta_1, \dots, heta_{d_1-1}, \mathbf{z})$

Then you can implement a DA algorithm under igfratifity! * き うへの 28/32

Even under ignorability, the integrals in $L_{obs}(\theta \mid \mathbf{z}_{(r)})$ complicate things

Consider the full-data likelihood for the study variables only

$$L(\theta \mid \mathbf{z}) = \prod_{i=1}^{n} p(z_i \mid \theta)$$

Say you can sample from

$$p(\theta \mid \mathbf{z}) \propto L(\theta \mid \mathbf{z})p(\theta)$$

or you can sample from

$$p(\theta_1 \mid \theta_2, \dots, \theta_{d_1}, \mathbf{z})$$

$$\vdots$$

$$p(\theta_{d_1} \mid \theta_1, \dots, \theta_{d_1-1}, \mathbf{z})$$

Say you can sample for i = 1, ..., n from

 $p(z_{i(\bar{r}_i)} \mid z_{i(r_i)}, \theta)$

► Then you can implement a DA algorithm under igf®rability! * ₹ ? ₹ ? ? ? ???

Even under ignorability, the integrals in $L_{obs}(\theta \mid \mathbf{z}_{(r)})$ complicate things

Consider the full-data likelihood for the study variables only

$$L(\theta \mid \mathbf{z}) = \prod_{i=1}^{n} p(z_i \mid \theta)$$

Say you can sample from

$$p(\theta \mid \mathbf{z}) \propto L(\theta \mid \mathbf{z})p(\theta)$$

or you can sample from

$$p(\theta_1 \mid \theta_2, \dots, \theta_{d_1}, \mathbf{z})$$

$$\vdots$$

$$p(\theta_{d_1} \mid \theta_1, \dots, \theta_{d_1-1}, \mathbf{z})$$

Say you can sample for
$$i = 1, ..., n$$
 from

$$p(z_{i(\bar{r}_i)} \mid z_{i(r_i)}, \theta)$$

Then you can implement a DA algorithm under ignorability!

Continuing our example from the previous classes:

► Let
$$Z_i = (Z_{i1}, Z_{i2})$$
, $Z_{i1}, Z_{i2} \in \{1, 2\}$, Z_i 's are i.i.d.,
 $p(Z_{i1} = k, Z_{i2} = l \mid \theta) = \pi_{kl}$

•
$$\theta = (..., \pi_{kl}, ...),$$
 $W_{ikl} = I(Z_{i1} = k, Z_{i2} = l)$

The likelihood of the study variables is

$$L(\theta \mid \mathbf{z}) = \prod_{i} \left[\prod_{k,l} \pi_{kl}^{W_{ikl}} \right] = \prod_{k,l} \pi_{kl}^{n_{kl}}$$

where $n_{kl} = \sum_{i} W_{ikl}, k, l \in \{1, 2\}$

Say
$$\theta = (\dots, \pi_{kl}, \dots) \sim \text{Dirichlet}(\alpha), \quad \alpha = (\dots, \alpha_{kl}, \dots)$$

► Therefore, $\theta \mid \mathbf{z} \sim \text{Dirichlet}(\alpha')$, $\alpha' = (\dots, \alpha_{kl} + n_{kl}, \dots)$

However, we have missing data (we'll assume ignorability)

- ▶ Let $R_i = (R_{i1}, R_{i2})$, $R_{i1}, R_{i2} \in \{0, 1\}$, R_i 's are i.i.d.
- In HW2, you show that the observed-data likelihood for the study variables can be written as

$$L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) = \prod_{i} \pi_{z_{i1}z_{i2}}^{I(r_i=11)} \pi_{z_{i1}+}^{I(r_i=10)} \pi_{+z_{i2}}^{I(r_i=01)}$$

A quick inspection shows that Bayesian inference with L_{obs}(θ | z_(r)) becomes complicated

However, notice that the distribution of Z_(r̄) | z_(r), θ is easy to derive!

For r = 01, $Z_1 | z_2, \theta \sim \text{Categorical}[\pi_{+z_2}^{-1}(\pi_{1,z_2}, \pi_{2,z_2})]$ For r = 10, $Z_2 | z_1, \theta \sim \text{Categorical}[\pi_{z_1+}^{-1}(\pi_{z_1,1}, \pi_{z_1,2})]$ For r = 00, $Z | \theta \sim \text{Categorical}[(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22})]$ For r = 11, there's nothing to sample!

However, we have missing data (we'll assume ignorability)

- ▶ Let $R_i = (R_{i1}, R_{i2})$, $R_{i1}, R_{i2} \in \{0, 1\}$, R_i 's are i.i.d.
- In HW2, you show that the observed-data likelihood for the study variables can be written as

$$L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})}) = \prod_{i} \pi_{z_{i1}z_{i2}}^{I(r_i=11)} \pi_{z_{i1}+}^{I(r_i=10)} \pi_{+z_{i2}}^{I(r_i=01)}$$

- A quick inspection shows that Bayesian inference with L_{obs}(θ | z_(r)) becomes complicated
- ▶ However, notice that the distribution of $Z_{(\bar{r})} | z_{(r)}, \theta$ is easy to derive!

For
$$r = 01$$
, $Z_1 | z_2, \theta \sim \text{Categorical}[\pi_{z_1}^{-1}(\pi_{1,z_2}, \pi_{2,z_2})]$
For $r = 10$, $Z_2 | z_1, \theta \sim \text{Categorical}[\pi_{z_1}^{-1}(\pi_{z_1,1}, \pi_{z_1,2})]$
For $r = 00$, $Z | \theta \sim \text{Categorical}[(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22})]$
For $r = 11$, there's nothing to sample!

Therefore, implementing a DA algorithm is very straightforward!

- Choose starting point $\theta^{(0)}$
- Iteratively do

(a) For $i = 1, \ldots, n$, sample

$$Z_{i(\bar{r}_i)}^{(t)} \sim p(z_{(\bar{r}_i)} \mid z_{i(r_i)}, \theta^{(t-1)})$$

and define
$$z_i^{(t)} = "(z_{i(r_i)}, Z_{i(\bar{r}_i)}^{(t)})"^5$$

(b) Sample $\theta^{(t)} | \mathbf{z}^{(t)} \sim \text{Dirichlet}(\alpha^{(t)})$, where $\alpha^{(t)} = (\dots, \alpha_{kl} + n_{kl}^{(t)}, \dots)$ where $\mathbf{z}^{(t)} = \{\mathbf{z}_i^{(t)}\}_{i=1}^n$ and each $n_{kl}^{(t)}$ is computed from $\mathbf{z}^{(t)}$

HW3: note that part (b) only uses $n_{kl}^{(t)}$ from part (a). Can you find a way of simplifying part (a) so that we don't need to sample each $z_i^{(t)}$ individually but still obtain each $n_{kl}^{(t)}$?

⁵We don't really mean "put $z_{i(r_i)}$ on the left and $Z_{i(\overline{r_i})}^{(t)}$ on the right," but rather, keep the observed entries of z_i fixed at $z_{i(r_i)}$ and fill its missing entries with $Z_{i(\overline{r_i})}^{(t)}$

Therefore, implementing a DA algorithm is very straightforward!

- Choose starting point $\theta^{(0)}$
- Iteratively do
 (a) For i = 1,..., n, sample

$$Z_{i(\bar{r}_i)}^{(t)} \sim p(z_{(\bar{r}_i)} \mid z_{i(r_i)}, \theta^{(t-1)})$$

and define $z_i^{(t)} = "(z_{i(r_i)}, Z_{i(\bar{r}_i)}^{(t)})"^5$

(b) Sample $\theta^{(t)} | \mathbf{z}^{(t)} \sim \text{Dirichlet}(\alpha^{(t)})$, where $\alpha^{(t)} = (\dots, \alpha_{kl} + n_{kl}^{(t)}, \dots)$ where $\mathbf{z}^{(t)} = \{z_i^{(t)}\}_{i=1}^n$ and each $n_{kl}^{(t)}$ is computed from $\mathbf{z}^{(t)}$

HW3: note that part (b) only uses $n_{kl}^{(t)}$ from part (a). Can you find a way of simplifying part (a) so that we don't need to sample each $z_i^{(t)}$ individually but still obtain each $n_{kl}^{(t)}$?

⁵We don't really mean "put $z_{i(r_i)}$ on the left and $Z_{i(\bar{r}_i)}^{(t)}$ on the right," but rather, keep the observed entries of z_i fixed at $z_{i(r_i)}$ and fill its missing entries with $Z_{i(\bar{r}_i)}^{(t)} \equiv \cdots \oplus Q_{i(\bar{r}_i)}$

Therefore, implementing a DA algorithm is very straightforward!

- Choose starting point $\theta^{(0)}$
- Iteratively do
 (a) For i = 1,..., n, sample

$$Z_{i(\bar{r}_i)}^{(t)} \sim p(z_{(\bar{r}_i)} \mid z_{i(r_i)}, \theta^{(t-1)})$$

and define $z_i^{(t)} = "(z_{i(r_i)}, Z_{i(\bar{r}_i)}^{(t)})"^5$

(b) Sample $\theta^{(t)} | \mathbf{z}^{(t)} \sim \text{Dirichlet}(\alpha^{(t)})$, where $\alpha^{(t)} = (\dots, \alpha_{kl} + n_{kl}^{(t)}, \dots)$ where $\mathbf{z}^{(t)} = \{z_i^{(t)}\}_{i=1}^n$ and each $n_{kl}^{(t)}$ is computed from $\mathbf{z}^{(t)}$

HW3: note that part (b) only uses $n_{kl}^{(t)}$ from part (a). Can you find a way of simplifying part (a) so that we don't need to sample each $z_i^{(t)}$ individually but still obtain each $n_{kl}^{(t)}$?

⁵We don't really mean "put $z_{i(r_i)}$ on the left and $Z_{i(\bar{r}_i)}^{(t)}$ on the right," but rather, keep the observed entries of z_i fixed at $z_{i(r_i)}$ and fill its missing entries with $Z_{i(\bar{r}_i)}^{(t)} \ge -\infty$

Summary

Main take-aways from today's lecture:

- Gibbs sampling to sample from complex distributions via sequential sampling from conditionals – commonly applied to sampling from posterior distributions
- ▶ Ignorability for Bayesian inference: MAR + separability + $\theta \perp\!\!\!\perp \psi$ a priori
- Data augmentation to handle missing data in Bayesian inference it can be straightforward for some problems, but more generally it needs additional Gibbs steps

Next lecture:

- Multiple imputation (finally!)
- Multiple imputation by chained equations

Summary

Main take-aways from today's lecture:

- Gibbs sampling to sample from complex distributions via sequential sampling from conditionals – commonly applied to sampling from posterior distributions
- ▶ Ignorability for Bayesian inference: MAR + separability + $\theta \perp\!\!\!\perp \psi$ a priori
- Data augmentation to handle missing data in Bayesian inference it can be straightforward for some problems, but more generally it needs additional Gibbs steps

Next lecture:

- Multiple imputation (finally!)
- Multiple imputation by chained equations