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Previous Lecture

Introduction to Bayesian inference:

I Alternative framework for deriving inferences from data

I Philosophical motivation: inclusion of prior belief or knowledge,
uncertainty quantification in terms of distributions for parameters

I Practical motivation: convenient in some problems, might lead to
good frequentist performance

I Complex problems become computationally involved – posterior
distribution needs to be approximated (e.g., Gibbs sampling)
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Today’s Lecture

I Gibbs sampling to sample from complex distributions, including
posterior distributions

I Bayesian inference with missing data, the concept of ignorability

I Data augmentation to handle missing data in the Bayesian
framework
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Outline

Gibbs Sampling

Bayesian Inference with Missing Data Under Ignorability

Data Augmentation
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Gibbs Sampling

I Consider a distribution with density

p(z1, z2, . . . , zk)

I Say you want to sample from it but you don’t know how

I Say the conditionals are easy to sample from, e.g., each

p(z1 | z2, z3, . . . , zk)

p(z2 | z1, z3, . . . , zk)

...

p(zk | z1, z2, . . . , zk−1)

corresponds to a known and commonly used distribution
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Gibbs Sampling
I Fix initial values (z

(0)
2 , z

(0)
3 , . . . , z

(0)
k )

I At iteration t, draw

z
(t)
1 ∼ p(z1 | z (t−1)

2 , z
(t−1)
3 , . . . , z

(t−1)
k )

z
(t)
2 ∼ p(z2 | z (t)

1 , z
(t−1)
3 , . . . , z

(t−1)
k )

...

z
(t)
k ∼ p(zk | z (t)

1 , z
(t)
2 , . . . , z

(t)
k−1)

I There exists t0 such that for t > t0 it is guaranteed that

(z
(t)
1 , z

(t)
2 , . . . , z

(t)
k ) ∼ p(z1, z2, . . . , zk)

I To learn the theory behind this you’ll need to take a course on
Bayesian statistics (or just learn it on your own!1)

1https://doi.org/10.1080/00031305.1992.10475878
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Example: Bhattacharyya’s Distribution

Consider real-valued random variables X and Y having a joint
distribution with density2

pX ,Y (x , y) = exp

[1, x , x2
] m00,m01,m02

m10,m11,m12

m20,m21,m22

 1
y
y2

 ,

where either

(a) m22 = m21 = m12 = 0; m20,m02 < 0; m2
11 < 4m20m02;

(b) m22 < 0, 4m22m02 > m2
12, 4m22m20 > m2

21.

m00 is determined by the other mij ’s so that pX ,Y integrates to 1.

2Distribution credited to Anil Kumar Bhattacharyya, who was a professor at the
Indian Statistical Institute. See, e.g.,
https://projecteuclid.org/download/pdf_1/euclid.ss/1009213728
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Example: Bhattacharyya’s Distribution
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Example: Bhattacharyya’s Distribution

From pX ,Y (x , y) it is easy to see that

pX |y (x |y) ∝ 1

σX (y)
exp

{
− [x − µX (y)]2

2σ2
X (y)

}
,

where

µX (y) = − m10 + m11y + m12y
2

2(m20 + m21y + m22y2)
,

and

σ2
X (y) = − 1

2(m20 + m21y + m22y2)
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Example: Bhattacharyya’s Distribution

And analogously, it is easy to see that

pY |x(y |x) ∝ 1

σY (x)
exp

{
− [y − µY (x)]2

2σ2
Y (x)

}
,

where

µY (x) = − m01 + m11x + m21x
2

2(m02 + m12x + m22x2)
,

and

σ2
Y (x) = − 1

2(m02 + m12x + m22x2)
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Example: Bhattacharyya’s Distribution

I In fact, Bhattacharyya’s distribution characterizes all bivariate
distributions with normal conditionals3

I Gibbs sampler to draw from pX ,Y is easy to implement! (R session 3)

3Arnold, Castillo and Sarabia (Statistical Science, 2001):
https://projecteuclid.org/download/pdf_1/euclid.ss/1009213728
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Gibbs Sampling for Bayesian Inference

For Bayesian inference we work with the posterior

p(θ | z) =
L(θ | z)p(θ)∫
L(θ | z)p(θ)dθ

I This expression might not be available in closed form

I Computing functionals of interest E [f (θ) | z] might be complicated

I Idea: sample from p(θ | z) and evaluate functionals of interest via
Monte Carlo, i.e., draw θ(1), θ(2), . . . , θ(m) ∼ p(θ | z) and
approximate

E [f (θ) | z] ≈ 1

m

m∑
t=1

f (θ(t))

I Problem: we might not know how to sample from p(θ | z)
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Gibbs Sampling for Bayesian Inference
I Say θ = (θ1, . . . , θd)

I Say you can sample from each of the conditionals

p(θ1 | θ2, . . . , θd , z)

...

p(θd | θ1, . . . , θd−1, z)

I Then a Gibbs sampler can be implemented to obtain draws

θ(t) = (θ
(t)
1 , θ

(t)
2 , . . . , θ

(t)
d ) ∼ p(θ | z), t = 1, . . . ,m

and approximate

E [f (θ) | z] ≈ 1

m

m∑
t=1

f (θ(t))
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Example of Gibbs Sampling for Bayesian Inference

Consider the changepoint detection problem presented by Carlin, Gelfand
and Smith (1992)4

I The data are counts generated over discrete time as

Xs ∼ Poisson(µ), if s = 1, . . . , τ

Xs ∼ Poisson(λ), if s = τ + 1, . . . ,T

where τ is unknown

I The vector of parameters is θ = (µ, λ, τ)

I The likelihood function is given by

L(µ, λ, τ | x1, . . . , xT ) =
∏
s≤τ

µxs e−µ

xs !

∏
τ<s≤T

λxs e−λ

xs !

4www.jstor.org/stable/2347570
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Example of Gibbs Sampling for Bayesian Inference

I Consider the independent priors

I µ ∼ Gamma(a1, b1)

I λ ∼ Gamma(a2, b2)

I τ ∼ Uniform({1, . . . ,T})

I Leading to the posterior (HW3)

p(µ, λ, τ | x1, . . . , xT ) ∝ µa1+
∑

s≤τ xs−1e−µ(τ+b1)

× λa2+
∑
τ<s≤T xs−1e−λ(T−τ+b2)

I Jointly sampling µ, λ, τ doesn’t seem to be easy
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Example of Gibbs Sampling for Bayesian Inference

However, the posterior conditionals are easy to sample from

µ | λ, τ, x1, . . . , xT ∼ Gamma(a1 +
∑
s≤τ

xs , τ + b1)

λ | µ, τ, x1, . . . , xT ∼ Gamma(a2 +
∑

τ<s≤T

xs ,T − τ + b2)

τ | µ, λ, x1, . . . , xT ∼ Categorical(q1, . . . , qT )

where qt ∝ L(µ, λ, τ = t | x1, . . . , xT )

∝ e(λ−µ)t+(log µ−log λ)
∑

s≤t xs

HW3: confirm that these are indeed the correct conditionals, and

implement the corresponding Gibbs sampler
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Practical Considerations for Gibbs Sampling

I Starting point: initial value θ(0) should ideally be chosen in a high
probability region of the posterior, but this is not always easy

I Burn-in period: what if your θ(0) was far from the high probability
region?: run the sampler for m iterations, discard the initial m0 < m

I Trace plots: to choose m and m0 you can plot each entry of

θ(t) = (θ
(t)
1 , . . . , θ

(t)
d ) versus the iteration number t: keep the draws

after the “chain has converged”

I We’ll cover these and other diagnostics in R session 3
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Outline

Gibbs Sampling

Bayesian Inference with Missing Data Under Ignorability
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Missing Data and Bayes

I With missing data, things get complicated

Lobs(θ, ψ | z(r), r) =
n∏

i=1

∫
Z(r̄i )

p(ri | zi , ψ)p(zi | θ) dzi(r̄i )

I Under a Bayesian approach, in general we need to obtain

p(θ, ψ | z(r), r) ∝ Lobs(θ, ψ | z(r), r)p(θ, ψ)
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Missing Data and Bayes Under MAR

I Remember: for computing MLEs, life is easier under ignorability
(MAR + separability)

I Is it the same for Bayesian inference?

I MAR + separability lead to the observed-data likelihood function

Lobs(θ, ψ | z(r), r)
MAR
=

[
n∏

i=1

p(ri | zi(ri ), ψ)

]
︸ ︷︷ ︸

p(r|z(r),ψ)

[
n∏

i=1

∫
Z(r̄i )

p(zi | θ) dzi(r̄i )

]
︸ ︷︷ ︸

Lobs (θ|z(r))

I Under a Bayesian approach we need to obtain

p(θ, ψ | z(r), r) ∝ Lobs(θ, ψ | z(r), r)p(θ, ψ),

but typically only θ is of interest, while ψ is a nuisance
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Missing Data and Bayes Under MAR
I Under a Bayesian approach, nuisance parameters are integrated over

p(θ | z(r), r) =

∫
p(θ, ψ | z(r), r)dψ

=

∫
Lobs(θ, ψ | z(r), r)p(θ, ψ)dψ∫∫
Lobs(θ, ψ | z(r), r)p(θ, ψ)dθdψ

MAR
=

Lobs(θ | z(r))
∫
p(r | z(r), ψ)p(θ, ψ)dψ∫

Lobs(θ | z(r))
∫
p(r | z(r), ψ)p(θ, ψ)dψdθ

I If additionally, θ ⊥⊥ ψ a priori

p(θ | z(r), r)
MAR
=

Lobs(θ | z(r))p(θ)
∫
p(r | z(r), ψ)p(ψ)dψ∫

Lobs(θ | z(r))p(θ)dθ
∫
p(r | z(r), ψ)p(ψ)dψ

MAR∝ Lobs(θ | z(r))p(θ)

MAR∝ p(θ | z(r))

I Therefore, ignorability for Bayesian inference requires MAR +
separability + θ ⊥⊥ ψ a priori

I Even then, how to obtain or sample from p(θ | z(r))? 21 / 32
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Data Augmentation

Main idea, say:

I We want to sample from posterior

p(θ | y) ∝ p(y | θ)p(θ),

but this is difficult

I It is easy to sample from

p(θ | y , x) ∝ p(x , y | θ)p(θ)

for some unobserved x

I It is easy to sample from

p(x | y , θ)
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Data Augmentation
I Start from x (0) (or from θ(0) and switch the steps)

I At iteration t, draw

θ(t) ∼ p(θ | y , x (t−1))

x (t) ∼ p(x | y , θ(t))

I There exists t0 such that for t > t0 it is guaranteed that

(x (t), θ(t)) ∼ p(x , θ | y)

and
θ(t) ∼ p(θ | y)

I Generally applicable, not only to missing data problems!

I Looks very much like an application of Gibbs sampling, what’s
special?
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A Timeline for Gibbs Sampling and Data Augmentation

I 1977: Dempster, Laird & Rubin popularize the EM algorithm

I 1984: Geman & Geman introduce the Gibbs sampler for image
processing – ignored in the statistics literature

I 1987: Tanner & Wong introduce the original Data Augmentation
paper, as the Bayesian analog of the EM algorithm – not quite what
we presented as DA above

I 1990: Gelfand & Smith introduce the Gibbs sampler in the statistics
literature and show its connection with DA – nowadays we see DA
as an application of Gibbs sampling

I 2001: van Dyk & Meng publish “The Art of Data Augmentation” as
a comprehensive view of different DA-type algorithms
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DA for Handling Missing Data in Bayesian Inference

I Consider the full-data likelihood

L(θ, ψ | z, r) =
n∏

i=1

p(ri | zi , ψ)p(zi | θ)

I Say you can sample from

p(θ, ψ | z, r) ∝ L(θ, ψ | z, r)p(θ, ψ)

I Say you can sample from

p(zi(r̄i ) | zi(ri ), ri , θ, ψ) ∝ p(ri | zi , ψ)p(zi | θ)

for i = 1, . . . , n

I If this is the case, you can iteratively sample from these to run a DA
algorithm!

26 / 32



DA for Handling Missing Data in Bayesian Inference

I Consider the full-data likelihood

L(θ, ψ | z, r) =
n∏

i=1

p(ri | zi , ψ)p(zi | θ)

I Say you can sample from

p(θ, ψ | z, r) ∝ L(θ, ψ | z, r)p(θ, ψ)

I Say you can sample from

p(zi(r̄i ) | zi(ri ), ri , θ, ψ) ∝ p(ri | zi , ψ)p(zi | θ)

for i = 1, . . . , n

I If this is the case, you can iteratively sample from these to run a DA
algorithm!

26 / 32



DA for Handling Missing Data in Bayesian Inference

I Consider the full-data likelihood

L(θ, ψ | z, r) =
n∏

i=1

p(ri | zi , ψ)p(zi | θ)

I Say you can sample from

p(θ, ψ | z, r) ∝ L(θ, ψ | z, r)p(θ, ψ)

I Say you can sample from

p(zi(r̄i ) | zi(ri ), ri , θ, ψ) ∝ p(ri | zi , ψ)p(zi | θ)

for i = 1, . . . , n

I If this is the case, you can iteratively sample from these to run a DA
algorithm!

26 / 32



DA for Handling Missing Data in Bayesian Inference

I Consider the full-data likelihood

L(θ, ψ | z, r) =
n∏

i=1

p(ri | zi , ψ)p(zi | θ)

I Say you can sample from

p(θ, ψ | z, r) ∝ L(θ, ψ | z, r)p(θ, ψ)

I Say you can sample from

p(zi(r̄i ) | zi(ri ), ri , θ, ψ) ∝ p(ri | zi , ψ)p(zi | θ)

for i = 1, . . . , n

I If this is the case, you can iteratively sample from these to run a DA
algorithm!

26 / 32



DA for Handling Missing Data in Bayesian Inference
I Typically, sampling from p(θ, ψ | z, r) is not easy

I Say θ = (θ1, . . . , θd1 ) and ψ = (ψ1, . . . , ψd2 )

I Instead of sampling (θ, ψ) jointly, we might have to sample
sequentially from the conditionals

p(θ1 | θ2, . . . , θd1 , ψ, z, r)

...

p(θd1 | θ1, . . . , θd1−1, ψ, z, r)

p(ψ1 | ψ2, . . . , ψd2 , θ, z, r)

...

p(ψd2 | ψ1, . . . , ψd2−1, θ, z, r)

I Or, we might be able to sample from

p(θ | ψ, z, r)
p(ψ | θ, z, r)
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DA for Bayesian Inference Under Ignorability
Even under ignorability, the integrals in Lobs(θ | z(r)) complicate things

I Consider the full-data likelihood for the study variables only

L(θ | z) =
n∏

i=1

p(zi | θ)

I Say you can sample from

p(θ | z) ∝ L(θ | z)p(θ)

or you can sample from

p(θ1 | θ2, . . . , θd1 , z)

...

p(θd1 | θ1, . . . , θd1−1, z)

I Say you can sample for i = 1, . . . , n from

p(zi(r̄i ) | zi(ri ), θ)

I Then you can implement a DA algorithm under ignorability!
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Example: Multinomial Data, Dirichlet Prior
Continuing our example from the previous classes:

I Let Zi = (Zi1,Zi2), Zi1,Zi2 ∈ {1, 2}, Zi ’s are i.i.d.,

p(Zi1 = k ,Zi2 = l | θ) = πkl

I θ = (. . . , πkl , . . . ), Wikl = I (Zi1 = k ,Zi2 = l)

I The likelihood of the study variables is

L(θ | z) =
∏
i

∏
k,l

πWikl

kl

 =
∏
k,l

πnkl
kl

where nkl =
∑

i Wikl , k , l ∈ {1, 2}

I Say θ = (. . . , πkl , . . . ) ∼ Dirichlet(α), α = (. . . , αkl , . . . )

I Therefore, θ | z ∼ Dirichlet(α′), α′ = (. . . , αkl + nkl , . . . )
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Example: Multinomial Data, Dirichlet Prior
However, we have missing data (we’ll assume ignorability)

I Let Ri = (Ri1,Ri2), Ri1,Ri2 ∈ {0, 1}, Ri ’s are i.i.d.

I In HW2, you show that the observed-data likelihood for the study
variables can be written as

Lobs(θ | z(r)) =
∏
i

πI (ri=11)
zi1zi2 π

I (ri=10)
zi1+ π

I (ri=01)
+zi2

I A quick inspection shows that Bayesian inference with Lobs(θ | z(r))
becomes complicated

I However, notice that the distribution of Z(r̄) | z(r), θ is easy to derive!

For r = 01, Z1 | z2, θ ∼ Categorical[π−1
+z2

(π1,z2 , π2,z2 )]

For r = 10, Z2 | z1, θ ∼ Categorical[π−1
z1+(πz1,1, πz1,2)]

For r = 00, Z | θ ∼ Categorical[(π11, π12, π21, π22)]

For r = 11, there’s nothing to sample!
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Example: Multinomial Data, Dirichlet Prior
Therefore, implementing a DA algorithm is very straightforward!

I Choose starting point θ(0)

I Iteratively do

(a) For i = 1, . . . , n, sample

Z
(t)
i(r̄i )
∼ p(z(r̄i ) | zi(ri ), θ

(t−1))

and define z
(t)
i = ”(zi(ri ),Z

(t)
i(r̄i )

)”5

(b) Sample θ(t) | z(t) ∼ Dirichlet(α(t)), where α(t) = (. . . , αkl + n
(t)
kl , . . . )

where z(t) = {z (t)
i }

n
i=1 and each n

(t)
kl is computed from z(t)

HW3: note that part (b) only uses n
(t)
kl from part (a). Can you find a way

of simplifying part (a) so that we don’t need to sample each z
(t)
i

individually but still obtain each n
(t)
kl ?

5We don’t really mean “put zi(ri ) on the left and Z
(t)
i(r̄i )

on the right,” but rather,

keep the observed entries of zi fixed at zi(ri ) and fill its missing entries with Z
(t)
i(r̄i )
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Summary

Main take-aways from today’s lecture:

I Gibbs sampling to sample from complex distributions via sequential
sampling from conditionals – commonly applied to sampling from
posterior distributions

I Ignorability for Bayesian inference: MAR + separability + θ ⊥⊥ ψ a
priori

I Data augmentation to handle missing data in Bayesian inference – it
can be straightforward for some problems, but more generally it
needs additional Gibbs steps

Next lecture:

I Multiple imputation (finally!)

I Multiple imputation by chained equations
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