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Previous Lecture

Introduction to Bayesian inference:
» Alternative framework for deriving inferences from data

» Philosophical motivation: inclusion of prior belief or knowledge,
uncertainty quantification in terms of distributions for parameters

» Practical motivation: convenient in some problems, might lead to
good frequentist performance

» Complex problems become computationally involved — posterior
distribution needs to be approximated (e.g., Gibbs sampling)



Today's Lecture

» Gibbs sampling to sample from complex distributions, including
posterior distributions

» Bayesian inference with missing data, the concept of ignorability

» Data augmentation to handle missing data in the Bayesian
framework



Outline

Gibbs Sampling
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» Consider a distribution with density

p(Zl, 22y ... aZk)

» Say you want to sample from it but you don’t know how



Gibbs Sampling

» Consider a distribution with density
p(zl7 22y ... aZk)
» Say you want to sample from it but you don’t know how

» Say the conditionals are easy to sample from, e.g., each

p(zl | 22,23y ... 7zk)
P(Zz | 21,23,-~-,Zk)
P(Zk | 21,22,~~,Zk—1)

corresponds to a known and commonly used distribution

32



Gibbs Sampling

» Fix initial values (zéo),zéo), .. .,Z/EO))
» At iteration t, draw
zl(t) ~ p(z | zét_l),zét_l), .. 7z,(f_l))
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» Fix initial values (zéo),zéo), .. .,Z/EO))
» At iteration t, draw
zl(t) ~ p(z | zét_l),zét_l), .. 7z,(f_l))
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Gibbs Sampling

» Fix initial values (zéo),zéo), .. .,Z/EO))
» At iteration t, draw
zl(t) ~ p(z | zét_l),zét_l), .. 7z,(f_l))

zét) ~ p(z | z{t), zgt_l), e ,z,Et_l))

z,Et) ~ p(z | zft), zQ(t), . 721(21)
» There exists ty such that for t > ty it is guaranteed that
( (1) _(t)

Z1 52 ,...,Z,((t))NP(Zl,ZQ,...,Zk)

6
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Gibbs Sampling

» Fix initial values (zéo),zéo), .. .,Z/EO))
» At iteration t, draw
A0~ pz | A7V, AV,

2~ p(z | 27, 2§

2~ plz | 21,

AP

(t=1)

P

P

ey

27)

(f—l))

s Zy

7zl(<?1)

» There exists ty such that for t > ty it is guaranteed that

( (1) (1)

Z1 52 ,...,Z,((t))NP(Zl,Zz,...,Zk)

» To learn the theory behind this you'll need to take a course on
Bayesian statistics (or just learn it on your own!?)
'https://doi.org/10.1080/00031305.1992.10475878
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Example: Bhattacharyya's Distribution

Consider real-valued random variables X and Y having a joint
distribution with density?

Moo, Mo1, Mo2 1

2

px.y(x,y) =exp < [1,x,x%] [mio,mu1,mz2| |y | ¢,
2
Moo, M21, M22 | Y

where either

(a) Mo = mp1 = mia = 0; mag, mox < 0; m¥y < 4mogmoy;

(b) ma <0, 4mpamoz > m3,, dmymyy > m3;.

mgo is determined by the other mj;’s so that px vy integrates to 1.

2Distribution credited to Anil Kumar Bhattacharyya, who was a professor at the
Indian Statistical Institute. See, e.g.,
https://projecteuclid.org/download/pdf_1/euclid.ss/1009213728
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Example: Bhattacharyya's Distribution

From px v(x,y) it is easy to see that

Px|y(xly) o le(y)exp{—[x_'ux(y)]},

20%(y)
where
px(y) = — Mo + M1y + mioy?
2(myo + mory + mypy?)’
and 1
ox(y) = —

2(mpo + mory + mopy?)
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Example: Bhattacharyya's Distribution

And analogously, it is easy to see that

2
Py x(y]x) o UYI(X) exp {—[y 20%?)(:)()] } :
where
moy + my1x + my x>
py(x) = I E—" L
and 1
) =

2(moz + miax + mpox?)



Example: Bhattacharyya's Distribution

» In fact, Bhattacharyya's distribution characterizes all bivariate
distributions with normal conditionals?

» Gibbs sampler to draw from px y is easy to implement! (R session 3)

3Arnold, Castillo and Sarabia (Statistical Science, 2001):
https://projecteuclid.org/download/pdf_1/euclid.ss/1009213728

11/32


https://projecteuclid.org/download/pdf_1/euclid.ss/1009213728

Gibbs Sampling for Bayesian Inference

For Bayesian inference we work with the posterior

L(0 | 2)p(9)

POV = THe 1 2p(0)d0

» This expression might not be available in closed form

» Computing functionals of interest E[f(6) | z] might be complicated
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» Computing functionals of interest E[f(6) | z] might be complicated
> Idea: sample from p(6 | z) and evaluate functionals of interest via

Monte Carlo, i.e., draw 81, 9?) ... 90" ~ p(f | z) and
approximate

E[f(0) | 2] = Zf ()



Gibbs Sampling for Bayesian Inference

For Bayesian inference we work with the posterior

L(0 | 2)p(9)

POV = THe 1 2p(0)d0

» This expression might not be available in closed form
» Computing functionals of interest E[f(6) | z] might be complicated
> Idea: sample from p(6 | z) and evaluate functionals of interest via

Monte Carlo, i.e., draw 81, 9?) ... 90" ~ p(f | z) and
approximate

E[f(0) | 2] = Zf ()

» Problem: we might not know how to sample from p(¢ | z)



Gibbs Sampling for Bayesian Inference
> Say@:(@l,...,é)d)

» Say you can sample from each of the conditionals

p(91 | 92,...,9d,2)

p(bq | 61,...,04-1,2)
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Gibbs Sampling for Bayesian Inference
> Say@:(@l,...,é)d)

» Say you can sample from each of the conditionals

p(91 | 92,...,9d,2)
p(0a | 01,...,04-1,2)

» Then a Gibbs sampler can be implemented to obtain draws
0O = (0,60, 6D)y~p(0]2), t=1,....m

and approximate

E[f(0) Z F(0)

13 /32



Example of Gibbs Sampling for Bayesian Inference

Consider the changepoint detection problem presented by Carlin, Gelfand
and Smith (1992)*

» The data are counts generated over discrete time as

Xs ~ Poisson(p), if s=1,...,7
Xs ~ Poisson(A), if s=7+1,..., T

where 7 is unknown

4www. jstor.org/stable/2347570
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Example of Gibbs Sampling for Bayesian Inference

Consider the changepoint detection problem presented by Carlin, Gelfand
and Smith (1992)*

» The data are counts generated over discrete time as

Xs ~ Poisson(p), if s=1,...,7
Xs ~ Poisson(A), if s=7+1,..., T

where 7 is unknown
> The vector of parameters is 6 = (p, A, 7)

» The likelihood function is given by

L A7 [ 3,00 x7) = H e H NseA

4www. jstor.org/stable/2347570
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Example of Gibbs Sampling for Bayesian Inference

» Consider the independent priors

> u~ Gamma(ai, b1)
> X~ Gamma(az, b)
» 7 ~ Uniform({1,..., T})
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> X~ Gamma(az, b)
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» Leading to the posterior (HW3)
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Example of Gibbs Sampling for Bayesian Inference

» Consider the independent priors

> u~ Gamma(ai, b1)
> X~ Gamma(az, b)
» 7 ~ Uniform({1,..., T})

» Leading to the posterior (HW3)

P AT | X1,y xT) o p?t e Xt

$ NR2TErcocr %=L o= MT=7+b)

» Jointly sampling u, A\, 7 doesn't seem to be easy

15 /32



Example of Gibbs Sampling for Bayesian Inference

However, the posterior conditionals are easy to sample from

plATx,...,x7 ~ Gamma(a; + Y X, 7+ by)

s<t
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Example of Gibbs Sampling for Bayesian Inference

However, the posterior conditionals are easy to sample from

plATx,...,x7 ~ Gamma(a; + Y X, 7+ by)

s<t

A g, xt, .. xT ~ Gamma(ay + Z xs; T — 7 + by)

T<s<T
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Example of Gibbs Sampling for Bayesian Inference

However, the posterior conditionals are easy to sample from

plATx,...,x7 ~ Gamma(a; + Y X, 7+ by)

s<r
A o,y X1, ..., x7 ~ Gamma(ap + Z Xs, T — 7 + bo)
T7s<T
7|y Ay x1, ..., x7 ~ Categorical(qy,...,q7)
where g; o< L(p, A\, 7=t | x1,...,x7)

x e()\—u)t+(|og p—logA) 3 <, Xs

16

32



Example of Gibbs Sampling for Bayesian Inference

However, the posterior conditionals are easy to sample from

plATx,...,x7 ~ Gamma(a; + Y X, 7+ by)

s<r
A o,y X1, ..., x7 ~ Gamma(ap + Z Xs, T — 7 + bo)
T<s<T
7|y Ay x1, ..., x7 ~ Categorical(qy,...,q7)
where g; o L(pt, A\, 7 =t | x1,...,XT)

. e()\—u)t+(|og p—logA) 3 <, Xs

HWa3: confirm that these are indeed the correct conditionals, and

implement the corresponding Gibbs sampler

16
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Practical Considerations for Gibbs Sampling

» Starting point: initial value #(9) should ideally be chosen in a high
probability region of the posterior, but this is not always easy
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> Burn-in period: what if your #(°) was far from the high probability
region?: run the sampler for m iterations, discard the initial mg < m
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Practical Considerations for Gibbs Sampling

» Starting point: initial value #(9) should ideally be chosen in a high
probability region of the posterior, but this is not always easy

> Burn-in period: what if your #(°) was far from the high probability
region?: run the sampler for m iterations, discard the initial mg < m

» Trace plots: to choose m and mg you can plot each entry of
o) = (9@, e ,th)) versus the iteration number t: keep the draws
after the “chain has converged”
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Practical Considerations for Gibbs Sampling

v

Starting point: initial value #(9) should ideally be chosen in a high
probability region of the posterior, but this is not always easy

Burn-in period: what if your 6(9) was far from the high probability
region?: run the sampler for m iterations, discard the initial mg < m

Trace plots: to choose m and mg you can plot each entry of
6(t) = (9@, e ,th)) versus the iteration number t: keep the draws
after the “chain has converged”

We'll cover these and other diagnostics in R session 3

17 /32



Outline

Bayesian Inference with Missing Data Under Ignorability
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Missing Data and Bayes

» With missing data, things get complicated

Laan0.0 1 260.0) =TT [ o | 21000tz 10) i
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Missing Data and Bayes

» With missing data, things get complicated

n

Laan0.0 1 260.0) =TT [ o | 21000tz 10) i

» Under a Bayesian approach, in general we need to obtain

P(971/J | Z(r), I’) ES Lobs(ga %ZJ | Z(y), ")P(9,1/1)
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Missing Data and Bayes Under MAR

» Remember: for computing MLEs, life is easier under ignorability
(MAR + separability)

> Is it the same for Bayesian inference?
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Missing Data and Bayes Under MAR

» Remember: for computing MLEs, life is easier under ignorability
(MAR + separability)

> Is it the same for Bayesian inference?

» MAR + separability lead to the observed-data likelihood function

MAR |- -
Lobs (0,9 | 2(s),¥) "= lH p(ri| Zi(r,),¢)] lH/Z p(zi | 0) de(r,-)]
i=1 i=1 (7)

p(rlzg),¥) Lobs(812(r))

» Under a Bayesian approach we need to obtain

p(0,% | z(r),r) o< Lops(0, % | z(r), ¥)P(6, %),

but typically only @ is of interest, while ¢ is a nuisance



Missing Data and Bayes Under MAR

» Under a Bayesian approach, nuisance parameters are integrated over
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» Under a Bayesian approach, nuisance parameters are integrated over

P60 200.1) = [ pl6.0] 2 1)
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» Under a Bayesian approach, nuisance parameters are integrated over

P60 200.1) = [ pl6.0] 2 1)
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Missing Data and Bayes Under MAR

» Under a Bayesian approach, nuisance parameters are integrated over

P60 200.1) = [ pl6.0] 2 1)
_ f L0b5(97w | Z(r),r)P(9a¢)d¢
S Lobs(0,% | 2(e), ¥)p (9 ¢)d9d¢
MAR Lobs(0 | 2 fp Yp(0,v)dy
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» If additionally, 8 L ¥ a priori
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Missing Data and Bayes Under MAR

» Under a Bayesian approach, nuisance parameters are integrated over

p(0] 2).1) = / p(6.9 | 2. 1)

~ Lobs(0,9 | 2y, 1) p(0, b))

S Lobs(8,% | 2(e ¥)p (9 ¢)d9d¢

MAR Lobs(8 | Z(r fP )p(6, ) dy
[ Lops(8] Zr) ) | p(r |Zr 7w)p(9,w)dwd9

» If additionally, 8 L ¥ a priori

p(0 | 2, r) V2R Lobs(0 [ 2()p(0) [ p(r | 2, ) p()ds
O T8 20)p(0)d6 [ p(r T2, 9)p(0) 0

MAR
X Lob5(9 | z(r))p(H)

MAR
X p(9 | Z(r))

» Therefore, ignorability for Bayesian inference requires MAR +
separability + 6 L ) a priori



Missing Data and Bayes Under MAR

» Under a Bayesian approach, nuisance parameters are integrated over

P60 200.1) = [ pl6.0] 2 1)
_ f L0b5(97w | Z(r),r)P(9a¢)d¢
IS Lobs(6,% | vy ¥)p(8, ¢)d0d¢
[ p(r |z< )p(0, %) dvp
I p(r |z 7w)p(9,w)dwd9

MAR  Lobs(0 | Z(r)
fLobs 0 I Z(r)

» If additionally, 8 L ¥ a priori
p(0| 2. 1) AR Lobs(0 | 2(r))p(0) [ p(r | 2(r), ) p(¥)d?
O T L(0] zr))pw)de T p(r [ 2y, ©)p()de

MAR
X Lob5(9 | z(r))p(H)

MAR
X p(9 | Z(r))

— |

» Therefore, ignorability for Bayesian inference requires MAR +
separability + 6 L ) a priori

» Even then, how to obtain or sample from p(0 | z())?



Outline

Data Augmentation
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Main idea, say:
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p(6 | y) o< p(y | 0)p(0),

but this is difficult
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Data Augmentation

Main idea, say:

» We want to sample from posterior

p(6 | y) o< p(y | 0)p(0),

but this is difficult

> |t is easy to sample from

p(0 | y,x) o< p(x,y | 0)p(6)

for some unobserved x

> |t is easy to sample from

p(x|y,0)



Data Augmentation
» Start from x(©) (or from 0() and switch the steps)

» At iteration t, draw
60) ~ p(8 | y, xt1)
X~ p(x |y, 00)



Data Augmentation

» Start from x(©) (or from 0() and switch the steps)

» At iteration t, draw
60) ~ p(8 | y, xt1)
X~ p(x |y, 00)

» There exists tg such that for t > ty it is guaranteed that
(x,0)) ~ p(x,0 | y)

and
0 ~ p(0 | y)



Data Augmentation

>

Start from x(©) (or from 6(©) and switch the steps)

At iteration t, draw
0 ~ p(0 | y, x(41)
() p(x | y,g(t))

There exists tg such that for t > tg it is guaranteed that
(x,0)) ~ p(x,0 | y)

and
0 ~ p(0 | y)

Generally applicable, not only to missing data problems!

Looks very much like an application of Gibbs sampling, what's
special?



A Timeline for Gibbs Sampling and Data Augmentation

» 1977: Dempster, Laird & Rubin popularize the EM algorithm
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A Timeline for Gibbs Sampling and Data Augmentation
» 1977: Dempster, Laird & Rubin popularize the EM algorithm

» 1984: Geman & Geman introduce the Gibbs sampler for image
processing — ignored in the statistics literature

» 1987: Tanner & Wong introduce the original Data Augmentation
paper, as the Bayesian analog of the EM algorithm — not quite what
we presented as DA above

» 1990: Gelfand & Smith introduce the Gibbs sampler in the statistics
literature and show its connection with DA — nowadays we see DA
as an application of Gibbs sampling

» 2001: van Dyk & Meng publish “The Art of Data Augmentation” as
a comprehensive view of different DA-type algorithms
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» Consider the full-data likelihood
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i=1
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DA for Handling Missing Data in Bayesian Inference

» Consider the full-data likelihood

LG, | z,r) = Hpr,|z,, Pz | 0)

» Say you can sample from

p(0, ¢ | z,x) o< L(6, | 2,r)p(0, ¢)

» Say you can sample from

p(zi(F,-) | Zi(r,-)vriuevdj) X P(ri ‘ Ziaz/})p(zi | 9)
fori=1,...,n
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DA for Handling Missing Data in Bayesian Inference

» Consider the full-data likelihood

LG, | z,r) = Hpr,|z,, Pz | 0)

» Say you can sample from

p(0, ¢ | z,x) o< L(6, | 2,r)p(0, ¢)

» Say you can sample from
p(zi(F,-) ‘ Zi(r,-)7 riaevdj) X P(ri ‘ Z,-,’(/J)P(Z,' | 9)
fori=1,...,n

» If this is the case, you can iteratively sample from these to run a DA
algorithm!

26
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DA for Handling Missing Data in Bayesian Inference
» Typically, sampling from p(8,v | z,r) is not easy

> Say9:(91,...,9d1) and ¢:(¢1,...,¢d2)
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DA for Handling Missing Data in Bayesian Inference
» Typically, sampling from p(8,v | z,r) is not easy
> Say 0 = (91,...,9dl) and ¢ = (¢17~--;¢d2)

» Instead of sampling (6,) jointly, we might have to sample
sequentially from the conditionals

P(‘gl | 927' --79d1a¢a2,")

P(9d1 | 917 ) 9d1713 1/Ja z, r)
P(Z/fl | ¢27 cee 51/}11279323 r)

P(¢dz | ¢17 e ?wd2_1? 9,2, I’)

» Or, we might be able to sample from

p(6 | ,z,r)
p(v | 0,z,r)



DA for Bayesian Inference Under Ignorability

Even under ignorability, the integrals in Lops(0 | z(y)) complicate things

» Consider the full-data likelihood for the study variables only
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DA for Bayesian Inference Under Ignorability

Even under ignorability, the integrals in Lops(0 | z(y)) complicate things

» Consider the full-data likelihood for the study variables only
L(8]z) Hp zi | 6)

» Say you can sample from

p(0 | 2) o< L(0 | 2)p(6)



DA for Bayesian Inference Under Ignorability

Even under ignorability, the integrals in Lops(0 | z(y)) complicate things

» Consider the full-data likelihood for the study variables only
L(8]z) Hp zi | 6)

» Say you can sample from
p(6 | z) oc L(6 | 2)p(0)
or you can sample from
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DA for Bayesian Inference Under Ignorability

Even under ignorability, the integrals in Lops(0 | z(y)) complicate things

» Consider the full-data likelihood for the study variables only
L(8]z) Hp zi | 6)

» Say you can sample from
p(6 | z) oc L(6 | 2)p(0)
or you can sample from

p(el | 927“'790'172)

p(edl ‘ 013 M '79d1—17z)

» Say you can sample for i =1,...,n from

p(zir) | Zi(ry» 0)

» Then you can implement a DA algorithm under ignorability!



Example: Multinomial Data, Dirichlet Prior
Continuing our example from the previous classes:

> Let Z; = (Z;l,Z,'Q), Z,‘l, Zip € {1,2}, Z's are i.i.d.,

p(Zin =k, Zip=11]0) =7y

>9:(...,7Tk/,...), VV,'k/:I(Z,j:k,Z;QZ/)

v

The likelihood of the study variables is
L(0]z)= H Hﬂ il Hﬂ.”kl
where ny = Zi Wi, k,I€ {1,2}

» Say 0 = (..., 7k, ... ) ~ Dirichlet(e), a=(...,au,...)

v

Therefore, 0 | z ~ Dirichlet(a’), o' =(...,an+ nk,-..)
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Example: Multinomial Data, Dirichlet Prior
However, we have missing data (we'll assume ignorability)

> Let R, = (R,'l, R,'2), Ri1, Ri» € {0, ].}, R;'s are i.i.d.

» In HW2, you show that the observed-data likelihood for the study
variables can be written as

r; 11) 1(r;j=10) _I(r;=01)
obs 9 | z(") HTFZ(IZIZ Tzin+ Tz,

> A quick inspection shows that Bayesian inference with Lops(6 | z())
becomes complicated



Example: Multinomial Data, Dirichlet Prior
However, we have missing data (we'll assume ignorability)

> Let R, = (R,'l, R,'2), Ri1, Ri» € {0, ].}, R;'s are i.i.d.

» In HW2, you show that the observed-data likelihood for the study
variables can be written as

r; 11) 1(r;j=10) _I(r;=01)
obs 9 | z(") Hﬂ-z(lza Tzin+ Tz,

> A quick inspection shows that Bayesian inference with Lops(6 | z())
becomes complicated

> However, notice that the distribution of Z7) | z), 0 is easy to derive!

For r=01, 2y | 2,0 ~ Categorical[W;le(7r17227 T2.2,)]
For r =10, Z | z1,0 ~ Categorical[n | (721,72 2)]
For r =00, Z | 0 ~ Categorical[(ml,mg,7r21,7r22)]

For r = 11, there's nothing to sample!



Example: Multinomial Data, Dirichlet Prior

Therefore, implementing a DA algorithm is very straightforward!
» Choose starting point 6(©)

> lteratively do
(a) Fori=1,...,n, sample

Zy ~ plam) | 2, 0“7)

and define z,-(t) ="(zi(r)s Z-(t—).))ns

5We don't really mean “put Zj(r;y on the left and Zi((tf)_) on the right,” but rather,
(1)

keep the observed entries of z; fixed at z,,) and fill its missing entries with Z[(F_)
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Example: Multinomial Data, Dirichlet Prior

Therefore, implementing a DA algorithm is very straightforward!
» Choose starting point 6(©)

> lteratively do
(a) Fori=1,...,n, sample

Zy ~ plam) | 2, 0“7)

and define 2 =" (z(,, Z(t)))ns

i

(b) Sample 8 | 2!} ~ Dirichlet(a(®)), where a'® = (..., au + n{), ...

where z(9) = {z,.(t)}f':l and each nsj) is computed from z(*)

(t)

)

HW3: note that part (b) only uses n;,’ from part (a). Can you find a way

of simplifying part (a) so that we don’t need to sample each P

i
individually but still obtain each nfj)?

5We don't really mean “put Zj(;;y on the left and Z\¥) on the right,” but rather,

i(F)
keep the observed entries of z; fixed at z,,) and fill its missing entries with Z[((tf)_)

31/32



Summary

Main take-aways from today’s lecture:

> Gibbs sampling to sample from complex distributions via sequential
sampling from conditionals — commonly applied to sampling from
posterior distributions

» Ignorability for Bayesian inference: MAR + separability + 6 1L v a
priori

» Data augmentation to handle missing data in Bayesian inference — it
can be straightforward for some problems, but more generally it
needs additional Gibbs steps
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» Data augmentation to handle missing data in Bayesian inference — it
can be straightforward for some problems, but more generally it
needs additional Gibbs steps

Next lecture:
» Multiple imputation (finally!)

» Multiple imputation by chained equations
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