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Previous Lecture

Introduction to likelihood-based approaches to handling missing data:

> In general, we need to posit parametric models for the study
variables and for the response mechanism

» Response mechanism can be ignored if MAR + separability of
parameters

Lobs(0,7)) MAR [H p(ri | zi(rs ] lH/ p(zi | 0) dzjz ]
i=1

Can be ignored Provides MLE of 6 under MAR

» Finding the MLE of # might be complicated, even under ignorability



Today's Lecture

The Expectation-Maximization (EM) algorithm
» General derivation
» Simplification under MAR
» Simplification under exponential families
» Monte Carlo EM

Reading
» Pages 62 to 75, Chapter 3 of Davidian and Tsiatis (not required)
» Sean Borman's online tutorial on the EM algorithm (recommended):

https:
//www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf


https://www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf
https://www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf

The Expectation-Maximization Algorithm

» The EM algorithm was presented formally by Dempster, Laird &
Rubin (JRSSB, 1977), although similar ideas had appeared earlier

Maximum Likelihood from Incomplete Data via the EM Algorithm

By A. P. DEMPSTER, N. M. LAIRD and D. B. RuBIN
Harvard University and Educational Testing Service
[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH
SecTION on Wednesday, December 8th, 1976, Professor S. D. SILVEY in the Chair]
SUMMARY
A broadly licable algorithm for i il likelihood esti from

incomplete data is presented at various levels of generality. Theory shawmg the
monotone behaviour of the 1|kehhood and convergence of the algorithm is derived.

Many are sk ing missing value sltuatlons, applications to
grouped, censored or truncated data, finite mixture models, variance component
estimation, hyperparameter esti iteratively reweighted least squares and

factor analysis.
Keywords: MAXIMUM LIKELIHOOD ; INCOMPLETE DATA ; EM ALGORITHM; POSTERIOR MODE

> A general scheme for deriving maximization algorithms when the
likelihood can be expanded in terms of latent or missing variables



Derivation of the EM Algorithm

» We need to maximize observed-data likelihood, with generic term
given by

Lops(P) = p(r,z | ¥) dz;
b Lm @
where 9 = (6,4) and p(r,z | 9) = p(r | 2,%)p(z | 6)

» Goal: construct sequence 9@ 9(1) . that converges to the MLE 9

» Remember: maximizing £ops(1) is equivalent to maximizing
log £ops (1)



Fun Fact: Jensen’s Inequality

If f is a concave function, and X is a random variable, then

FIE(X)] = E[F(X)]

6/23
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Derivation of the EM Algorithm
Say we have 9(), note that
log ops (V) = Iog/ p(r,z | 9) dzz

| r)719 )
9 dzr
/ P r,z| ) Z(r) | , (r)719( ) Z(7)

N

p(r,z | )
Iog/ p(z#) | 1z L9
2, PEO 020 ) T 2 00

p(r,z | 9)
p(zz | 1,2y, 9)
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Derivation of the EM Algorithm
Say we have 9(), note that

08 Lose(9) = og | plrz | 9) dip
2

p(Z(F) | r7z(r)719(t))
:Iog/ p(r,z | dzr
24 ( )P(Zm [ 7,2, 00) 70

p(r,z | V)
zlog/ p(zis | r,z(n, 90 dz;
Zp SUREC )P(Z(r) 7,29, 00) O
Jensen's p(r’ z | 19)
> p(ZF |I’,Zr,19(t))|0g sz
/Z(;> (r) (r) p(z7) | r7z(r)’19(t)) ()
= h(0 | 9Y)

HW2: show that h(9(®) | 9(t)) = log £ops (V(H))



Derivation of the EM Algorithm

» Since
> log Lops (1) > h(9 | 9©)

> A0 | 9O) = log Lops (V1))

> A value 9(t+1) that maximizes h(19 | 9(9)) will increase the value of
log £ops(V)

> Idea: iteratively maximize h(2 | 9(1))



EM in a Picture

L(0)
1(6]6x)

L(07L+1)

1(6n+116n)

L(an) = l(9n|9n)

1(6]6n)

Ont1

Taken from Sean Borman'’s online tutorial



Derivation of the EM Algorithm

9D = argmax h(v | 99
9
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Derivation of the EM Algorithm

I = argmax h(9 | 99)
)

p(r,z |9
= arg max/ p(z | r,z(,),ﬁ(t))log (r,z | 9) dz(z

o Jzy P(z(r) | rs 20, 9)
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Derivation of the EM Algorithm

I = argmax h(9 | 99)
)

p(r.z | J)
p(zz | 1, 2y, 00)

= arg max/ p(z | r,z(,),ﬁ(t))log dz(z
0 25

— argmax / Pz | 7> 200, 09) log p(r, 2 | 9) dzgy
20
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Derivation of the EM Algorithm

I = argmax h(9 | 99)
9

p(r.z | J)
p(zz | 1, 2y, 00)

= arg max/ p(z | r,z(,),ﬂ(t))log
—argmax [ play | 129,99 logplr.2 | ) dy
9 2
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Derivation of the EM Algorithm

I = argmax h(9 | 99)
9

p(r.z | J)
p(zz | 1, 2y, 00)

= arg max/ p(z | r,z(,),ﬂ(t))log dz(z
0 25

= argmax / P27 | .2, 90) log plr, 2 | ¥) dzp)
2

= arg;nax/z p(zs) | 1.2y, 91) log p(r, 21y, 27y | 9) dzz)
®

=argmax E [ log p(raz(r)vz(F) | 19) | R=r, Z(r) = Z(r)77‘9(t)]
9



The EM Algorithm

» The Expectation step:

Q(ﬁ | ﬂ(t)) =E [ |ng(l’7 Z(,)7Z(;) | 19) | R = I’,Z(,) = Z(,)719(t)]

» The Maximization step:

9D = argmax Qv | ¥¥))
9

» The algorithm is run until some convergence criterion is satisfied
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The Expectation Step

Q(ﬁ | 19(t)) =E [ |ng(l’,Z(r),Z(;) | 19) | R = r7Z(,) = Z(,),ﬁ(t)]

= [ bl | 7oz 9 logalr | 2.6) +logplz | 0)] dity
(F)

= Qu(¥ [ 9W) + Qu(0 | v1V),
where

p(r,z | 9®)

_ gy = el )
Plen [ 120,70 = o 2y | 99)°

which, generally, is not nice-looking!



The Maximization Step

P = (D) G(FD) where

,(/}(H'l) = arg max Q¢(¢ | ﬂ(t))
P

p(t+1) — argmax Qp(6 | 19(1:))
0

13/23



The EM Algorithm Under MAR

Again, life is easier under MAR

p(r,z|9)
P\Z(7 r,Z, V) =
(29 | 129, 9) p(r 200 1)

14 /23



The EM Algorithm Under MAR

Again, life is easier under MAR

plrz] )
pr. 2 | )

( | 2.4)p(z | 0)
" o, plr 1z 0)p(z | 6) dzg

p(zi | 1z, 9) =

14 /23



The EM Algorithm Under MAR

Again, life is easier under MAR

plr,z]9)
Py | 12y, 0) = p(r.z [ 0)
( | z,4)p(z | 0)
o prz ez 1 6) dz
MAR p(r | 2, ¥)p ( 16)

( Z(r ¢)fz ‘9 dZ(r



The EM Algorithm Under MAR

Again, life is easier under MAR

plrz|9)
Plan [ r20:9) = 20 ST
( | z,9)p(z | 0)
= To el 2.0z 19) dzp
MAR p(r |z, ¥)p ( 19)
( Z(r), ¢)fz ‘9 dZ(r
( 10)

fz< z | 0) dzr



The EM Algorithm Under MAR

Again, life is easier under MAR

p(rz|0)
Pz | rz0),9) = p(r, 24 [ V)
( | z,)p(z | 0)
" o Pl 1200z 1 9) dz
MAR p(r |z, ¥)p ( 19)
( Z(r), ¢)fz ‘9 dZ(r
( 1 6)
Tz, Pz 10) dzp

_p(zr)‘z(rv )



The EM Algorithm Under MAR

» The Expectation step:
Qu(0 | 0M) = E [ logp(z() Zry | 0) | Z(ry = 2y, 0]

= / p(z(r) | 2y, 01) log p(z | 0) dz )
Z)

» The Maximization step:

001 = argmax Qy(6 | )
0
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The EM Algorithm Under MAR

> p(z | z(,),ﬁ(t)) has a nice form under some parametric models,
such as multivariate normals and multinomials
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The EM Algorithm Under MAR

> p(z | z(,),G(t)) has a nice form under some parametric models,

such as multivariate normals and multinomials

> log p(z | 8) decomposes nicely into expectations of sufficient
statistics if log p(z | 6) is in exponential-family form

16

23



The EM Algorithm With Exponential Families
Say p(z | 8) belongs to an exponential family with 8 = (64, ...,6,), that

Zns s ] 9)
with c(0) = [ b(z)exp [ S, 1:(0)To(2)] dz

p(z | 0) = b(z) exp
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The EM Algorithm With Exponential Families
Say p(z | 8) belongs to an exponential family with 8 = (64, ...,6,), that

Zns Ts( ] c(0)

with ¢(0) = [ b(z)exp [ S, 1:(0) To(2)] oz

HW?2:
> E step:

p(z | 0) = b(z) exp

Q0 16) Zns(9 VE [ To(2) | Ziry = 29,0] — log c(0)

s=1



The EM Algorithm With Exponential Families
Say p(z | 8) belongs to an exponential family with 8 = (64, ...,6,), that

Z "75 s ] (0)

with c(0) = [ b(z) exp [25:1 15(0) Ts(z)} dz

HW?2:
> E step:

p(z | 0) = b(z) exp

Qo(016) Zns(9E[T()|Zr)—Z(r 9] — log c(6)

» M step: find #(t+1) as the solution to

ELTZ) | Zyy=2,,00=E[Ti(2) | 0], s=1,....d
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Example of EM Algorithm Under MAR
HW?2:

>

| 4

Let Z = (Z1,25), Z1, Z» € {0,1}
Let W = (Whoo, Wo1, Who, Wi1), where
Wa=I(Zy =k Zo=1), kl€c0,1
We can therefore write
p(Zr=21,20 =2 | 0) = 74,
or
p[W = (woo, wo1, wio, wi1) | 0] = HW;Z“,
where 0 = (o0, o1, T10, T11)
What is p(Z1 = z1 | Z» = 2,0)?
Derive

Qu(0|0M) = E [ logp(z(r) Zy | 0) | Z(ry = 2y, 0]

= / p(z(7) | 2(r)0) log p(z | 0) dz(5)
2



Example of EM Algorithm Under MAR
HW?2:

>

| 2

>

Let Z; = (Zi, Z2), Zin, Zo € {0,1}, Zi's are i.i.d.
Let R; = (Ri1, Ri2), Ri1, Ri2 € {0,1}, Ri's are i.i.d.
Let W; = (Wioo, Wio1, Wito, Wi11), where

Wi = 1(Zn =k, Zin=1), k,1€0,1

We can therefore write

TOES | B8

ik,
where 6 = (7o, 701, 10, T11)
Derive

Qo(0 | 609)
Derive

00+1) = argmax Qu(0 | 61))
0

19/23
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» Under regularity conditions, the EM algorithm is guaranteed to
converge to a stationary point of the observed-data log-likelihood,;
however, this could be a local, global, or a saddle point
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Comments

Under regularity conditions, the EM algorithm is guaranteed to
converge to a stationary point of the observed-data log-likelihood,;
however, this could be a local, global, or a saddle point

Jeff Wu (1983) showed that the EM algorithm will converge if the
objective function has a unique maximum in the interior of the
parameter space

In practice, it is common to run the algorithm starting from different
starting points

The EM algorithm converges linearly, whereas other optimization
methods such as Newton-Raphson converge quadratically

The EM algorithm doesn't provide standard error estimates
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Monte Carlo EM Algorithm

» For complex models, we might not be able to compute a closed form
for

QW 1) = [ plag) | 2,0 log p(r | z.0) + logalz | 0) ] dr
(F)

» The idea: use Monte Carlo integration!
> Draw z((:)), ey ((r)) from the conditional distr. of Z | r, Z(,),ﬂ(t)
» Approximate Q¢ | 9)) as

M
1
le['ng(f|Z(r>az<(f"f)v1/’)+'°gp(z< 2 ‘9)}

> Needs to be done at each step of EM, for each ith sample point!
» Can be very computationally intensive
> Monte Carlo error ruins convergence guarantees of the EM

> My point of view: if | can sample from p(Z) | r, z),¥), | might as
well just take a full Bayesian approach! (we'll see this later)



The EM Algorithm under MAR

For standard errors / variance-covariance matrices
» Tom Louis (1982, JRSSB)
> Supplemental EM algorithm of Meng & Rubin (1991, JASA)
» Efron’s Bootstrap
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» EM algorithm can be convenient in some classes of parametric
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Summary

Main take-aways from today's lecture:
» EM algorithm can be convenient in some classes of parametric
models
Next lecture:

> Implementations of EM algorithms in R
» Standard errors: Bootstrap + EM



