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Previous Lecture

Introduction to likelihood-based approaches to handling missing data:

I In general, we need to posit parametric models for the study
variables and for the response mechanism

I Response mechanism can be ignored if MAR + separability of
parameters

Lobs(θ, ψ)
MAR
=

[
n∏

i=1

p(ri | zi(ri ), ψ)

]
︸ ︷︷ ︸

Can be ignored

[
n∏

i=1

∫
Z(r̄i )

p(zi | θ) dzi(r̄i )

]
︸ ︷︷ ︸

Provides MLE of θ under MAR

I Finding the MLE of θ might be complicated, even under ignorability
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Today’s Lecture

The Expectation-Maximization (EM) algorithm

I General derivation

I Simplification under MAR

I Simplification under exponential families

I Monte Carlo EM

Reading

I Pages 62 to 75, Chapter 3 of Davidian and Tsiatis (not required)

I Sean Borman’s online tutorial on the EM algorithm (recommended):
https:

//www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf
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The Expectation-Maximization Algorithm

I The EM algorithm was presented formally by Dempster, Laird &
Rubin (JRSSB, 1977), although similar ideas had appeared earlier

I A general scheme for deriving maximization algorithms when the
likelihood can be expanded in terms of latent or missing variables
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Derivation of the EM Algorithm

I We need to maximize observed-data likelihood, with generic term
given by

`obs(ϑ) =

∫
Z(r̄)

p(r , z | ϑ) dz(r̄)

where ϑ = (θ, ψ) and p(r , z | ϑ) = p(r | z , ψ)p(z | θ)

I Goal: construct sequence ϑ(0), ϑ(1), . . . that converges to the MLE ϑ̂

I Remember: maximizing `obs(ϑ) is equivalent to maximizing
log `obs(ϑ)
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Fun Fact: Jensen’s Inequality

If f is a concave function, and X is a random variable, then

f [E (X )] ≥ E [f (X )]
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Derivation of the EM Algorithm

Say we have ϑ(t), note that

log `obs(ϑ) = log

∫
Z(r̄)

p(r , z | ϑ) dz(r̄)

= log

∫
Z(r̄)

p(r , z | ϑ)
p(z(r̄) | r , z(r), ϑ

(t))

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

= log

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t))

p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

Jensen’s
≥

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t)) log

[
p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))

]
dz(r̄)

≡ h(ϑ | ϑ(t))

HW2: show that h(ϑ(t) | ϑ(t)) = log `obs(ϑ(t))

7 / 23



Derivation of the EM Algorithm

Say we have ϑ(t), note that

log `obs(ϑ) = log

∫
Z(r̄)

p(r , z | ϑ) dz(r̄)

= log

∫
Z(r̄)

p(r , z | ϑ)
p(z(r̄) | r , z(r), ϑ

(t))

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

= log

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t))

p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

Jensen’s
≥

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t)) log

[
p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))

]
dz(r̄)

≡ h(ϑ | ϑ(t))

HW2: show that h(ϑ(t) | ϑ(t)) = log `obs(ϑ(t))

7 / 23



Derivation of the EM Algorithm

Say we have ϑ(t), note that

log `obs(ϑ) = log

∫
Z(r̄)

p(r , z | ϑ) dz(r̄)

= log

∫
Z(r̄)

p(r , z | ϑ)
p(z(r̄) | r , z(r), ϑ

(t))

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

= log

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t))

p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

Jensen’s
≥

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t)) log

[
p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))

]
dz(r̄)

≡ h(ϑ | ϑ(t))

HW2: show that h(ϑ(t) | ϑ(t)) = log `obs(ϑ(t))

7 / 23



Derivation of the EM Algorithm

Say we have ϑ(t), note that

log `obs(ϑ) = log

∫
Z(r̄)

p(r , z | ϑ) dz(r̄)

= log

∫
Z(r̄)

p(r , z | ϑ)
p(z(r̄) | r , z(r), ϑ

(t))

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

= log

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t))

p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

Jensen’s
≥

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t)) log

[
p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))

]
dz(r̄)

≡ h(ϑ | ϑ(t))

HW2: show that h(ϑ(t) | ϑ(t)) = log `obs(ϑ(t))

7 / 23



Derivation of the EM Algorithm

Say we have ϑ(t), note that

log `obs(ϑ) = log

∫
Z(r̄)

p(r , z | ϑ) dz(r̄)

= log

∫
Z(r̄)

p(r , z | ϑ)
p(z(r̄) | r , z(r), ϑ

(t))

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

= log

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t))

p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

Jensen’s
≥

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t)) log

[
p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))

]
dz(r̄)

≡ h(ϑ | ϑ(t))

HW2: show that h(ϑ(t) | ϑ(t)) = log `obs(ϑ(t))

7 / 23



Derivation of the EM Algorithm

Say we have ϑ(t), note that

log `obs(ϑ) = log

∫
Z(r̄)

p(r , z | ϑ) dz(r̄)

= log

∫
Z(r̄)

p(r , z | ϑ)
p(z(r̄) | r , z(r), ϑ

(t))

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

= log

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t))

p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))
dz(r̄)

Jensen’s
≥

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t)) log

[
p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))

]
dz(r̄)

≡ h(ϑ | ϑ(t))

HW2: show that h(ϑ(t) | ϑ(t)) = log `obs(ϑ(t))

7 / 23



Derivation of the EM Algorithm

I Since

I log `obs(ϑ) ≥ h(ϑ | ϑ(t))

I h(ϑ(t) | ϑ(t)) = log `obs(ϑ
(t))

I A value ϑ(t+1) that maximizes h(ϑ | ϑ(t)) will increase the value of
log `obs(ϑ)

I Idea: iteratively maximize h(ϑ | ϑ(t))
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EM in a Picture

Taken from Sean Borman’s online tutorial
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Derivation of the EM Algorithm

ϑ(t+1) = arg max
ϑ

h(ϑ | ϑ(t))

= arg max
ϑ

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t)) log

[
p(r , z | ϑ)

p(z(r̄) | r , z(r), ϑ(t))

]
dz(r̄)

= arg max
ϑ

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t)) log p(r , z | ϑ) dz(r̄)

= arg max
ϑ

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t)) log p(r , z(r), z(r̄) | ϑ) dz(r̄)

= arg max
ϑ

E [ log p(r , z(r),Z(r̄) | ϑ) | R = r ,Z(r) = z(r), ϑ
(t)]
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The EM Algorithm

I The Expectation step:

Q(ϑ | ϑ(t)) = E [ log p(r , z(r),Z(r̄) | ϑ) | R = r ,Z(r) = z(r), ϑ
(t)]

I The Maximization step:

ϑ(t+1) = arg max
ϑ

Q(ϑ | ϑ(t))

I The algorithm is run until some convergence criterion is satisfied
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The Expectation Step

Q(ϑ | ϑ(t)) = E [ log p(r , z(r),Z(r̄) | ϑ) | R = r ,Z(r) = z(r), ϑ
(t)]

=

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t))[ log p(r | z , ψ) + log p(z | θ) ] dz(r̄)

= Qψ(ψ | ϑ(t)) + Qθ(θ | ϑ(t)),

where

p(z(r̄) | r , z(r), ϑ
(t)) =

p(r , z | ϑ(t))

p(r , z(r) | ϑ(t))
,

which, generally, is not nice-looking!
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The Maximization Step

ϑ(t+1) = (ψ(t+1), θ(t+1)), where

ψ(t+1) = arg max
ψ

Qψ(ψ | ϑ(t))

θ(t+1) = arg max
θ

Qθ(θ | ϑ(t))
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The EM Algorithm Under MAR

Again, life is easier under MAR

p(z(r̄) | r , z(r), ϑ) =
p(r , z | ϑ)

p(r , z(r) | ϑ)

=
p(r | z , ψ)p(z | θ)∫

Z(r̄)
p(r | z , ψ)p(z | θ) dz(r̄)

MAR
=

p(r | z(r), ψ)p(z | θ)

p(r | z(r), ψ)
∫
Z(r̄)

p(z | θ) dz(r̄)

=
p(z | θ)∫

Z(r̄)
p(z | θ) dz(r̄)

= p(z(r̄) | z(r), θ)
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The EM Algorithm Under MAR

I The Expectation step:

Qθ(θ | θ(t)) = E [ log p(z(r),Z(r̄) | θ) | Z(r) = z(r), θ
(t)]

=

∫
Z(r̄)

p(z(r̄) | z(r), θ
(t)) log p(z | θ) dz(r̄)

I The Maximization step:

θ(t+1) = arg max
θ

Qθ(θ | θ(t))
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The EM Algorithm Under MAR

I p(z(r̄) | z(r), θ
(t)) has a nice form under some parametric models,

such as multivariate normals and multinomials

I log p(z | θ) decomposes nicely into expectations of sufficient
statistics if log p(z | θ) is in exponential-family form
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The EM Algorithm With Exponential Families
Say p(z | θ) belongs to an exponential family with θ = (θ1, . . . , θd), that
is,

p(z | θ) = b(z) exp

[
d∑

s=1

ηs(θ)Ts(z)

]
/c(θ)

with c(θ) =
∫
b(z) exp

[∑d
s=1 ηs(θ)Ts(z)

]
dz

HW2:

I E step:

Qθ(θ | θ(t)) =
d∑

s=1

ηs(θ)E [ Ts(z) | Z(r) = z(r), θ
(t)]− log c(θ)

I M step: find θ(t+1) as the solution to

E [ Ts(Z ) | Z(r) = z(r), θ
(t)] = E [ Ts(Z ) | θ], s = 1, . . . , d
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Example of EM Algorithm Under MAR
HW2:

I Let Z = (Z1,Z2), Z1,Z2 ∈ {0, 1}

I Let W = (W00,W01,W10,W11), where

Wkl = I (Z1 = k ,Z2 = l), k , l ∈ 0, 1

I We can therefore write

p(Z1 = z1,Z2 = z2 | θ) = πz1z2 ,

or
p[W = (w00,w01,w10,w11) | θ] =

∏
k,l

πwkl

kl ,

where θ = (π00, π01, π10, π11)

I What is p(Z1 = z1 | Z2 = z2, θ)?

I Derive

Qθ(θ | θ(t)) = E [ log p(z(r),Z(r̄) | θ) | Z(r) = z(r), θ
(t)]

=

∫
Z(r̄)

p(z(r̄) | z(r), θ
(t)) log p(z | θ) dz(r̄)
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Example of EM Algorithm Under MAR
HW2:

I Let Zi = (Zi1,Zi2), Zi1,Zi2 ∈ {0, 1}, Zi ’s are i.i.d.

I Let Ri = (Ri1,Ri2), Ri1,Ri2 ∈ {0, 1}, Ri ’s are i.i.d.

I Let Wi = (Wi00,Wi01,Wi10,Wi11), where

Wikl = I (Zi1 = k ,Zi2 = l), k , l ∈ 0, 1

I We can therefore write

L(θ) =
∏
i,k,l

πwikl

kl ,

where θ = (π00, π01, π10, π11)

I Derive

Qθ(θ | θ(t))

I Derive

θ(t+1) = arg max
θ

Qθ(θ | θ(t))
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Comments

I Under regularity conditions, the EM algorithm is guaranteed to
converge to a stationary point of the observed-data log-likelihood;
however, this could be a local, global, or a saddle point

I Jeff Wu (1983) showed that the EM algorithm will converge if the
objective function has a unique maximum in the interior of the
parameter space

I In practice, it is common to run the algorithm starting from different
starting points

I The EM algorithm converges linearly, whereas other optimization
methods such as Newton-Raphson converge quadratically

I The EM algorithm doesn’t provide standard error estimates
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Monte Carlo EM Algorithm
I For complex models, we might not be able to compute a closed form

for

Q(ϑ | ϑ(t)) =

∫
Z(r̄)

p(z(r̄) | r , z(r), ϑ
(t))[ log p(r | z , ψ) + log p(z | θ) ] dz(r̄)

I The idea: use Monte Carlo integration!
I Draw z

(1)
(r̄) , . . . , z

(M)
(r̄) from the conditional distr. of Z(r̄) | r , z(r), ϑ

(t)

I Approximate Q(ϑ | ϑ(t)) as

1

M

M∑
m=1

[
log p(r | z(r), z

(m)
(r̄) , ψ) + log p(z(r), z

(m)
(r̄) | θ)

]
I Needs to be done at each step of EM, for each ith sample point!
I Can be very computationally intensive
I Monte Carlo error ruins convergence guarantees of the EM

I My point of view: if I can sample from p(Z(r̄) | r , z(r), ϑ), I might as
well just take a full Bayesian approach! (we’ll see this later)
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The EM Algorithm under MAR

For standard errors / variance-covariance matrices

I Tom Louis (1982, JRSSB)

I Supplemental EM algorithm of Meng & Rubin (1991, JASA)

I Efron’s Bootstrap
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Summary

Main take-aways from today’s lecture:

I EM algorithm can be convenient in some classes of parametric
models

Next lecture:

I Implementations of EM algorithms in R

I Standard errors: Bootstrap + EM
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