Statistical Methods for Analysis with Missing Data

Lecture 5: likelihood-based methods

Mauricio Sadinle
Department of Biostatistics
W UnIVERSITY of WASHINGTON

Previous Lectures

Naïve/ad-hoc approaches to handling missing data:

- Complete-case analyses are wasteful and potentially invalid unless MCAR holds
- Imputation methods might be valid for some quantities under MCAR, but:
- Variances are underestimated \Longrightarrow overconfidence in your results!
- Invalid results for other quantities, induced biases are not clear!
- R session 1:
- Simulation study showed mean imputation leads to:
- Invalid inferences on regression coefficients
- Underestimation of variances
- R package VIM implements variants of hot-deck imputation
- Open question: performance of bootstrap + imputation?

Today's Lecture

Likelihood-based approaches

- General set-up for maximum likelihood estimation
- How did Rubin come up with the MAR assumption?
- The concept of ignorability

Reading: pages $50-61$, Ch. 3, of Davidian and Tsiatis

Outline

Review of Maximum Likelihood Estimation

Likelihood-Based Set-Up with Missing Data

Rubin's Original MAR Assumption

Summary

Parametric Models

- $Z=\left(Z_{1}, \ldots, Z_{K}\right)$: generic vector of study variables
- Thus far we have written $p(z)$ to represent the probability density function of the distribution of Z
- We now work under a parametric model for the distribution of Z

$$
\{p(z \mid \theta)\}_{\theta},
$$

with $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right)$

- Model written as $\{p(z ; \theta)\}_{\theta}$ in Davidian and Tsiatis (philosophical difference)

Example of Parametric Model: Bivariate Normal

Suppose that $Y=\left(Y_{1}, Y_{2}\right)^{T}$ is bivariate normal

$$
Y \sim \mathcal{N}(\mu, \Sigma), \mu=\left(\mu_{1}, \mu_{2}\right)^{T}, \Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right)
$$

The probability density of Y is

$$
p(y \mid \theta)=\frac{1}{2 \pi|\Sigma|^{1 / 2}} \exp \left\{-(y-\mu)^{T} \Sigma^{-1}(y-\mu) / 2\right\}
$$

where $\theta=\left(\mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}, \sigma_{12}\right)^{T}$.

Our Typical, Idealized Sampling Process

- In practice, we have data z_{i}, for each $i=1, \ldots, n$
- We imagine that $z_{i}=\left(z_{i 1}, \ldots, z_{i K}\right)$ is a realization of a random vector $Z_{i}=\left(Z_{i 1}, \ldots, Z_{i K}\right)$
- All random vectors $\left\{Z_{i}\right\}_{i=1}^{n}$ follow the same distribution and are independent of each other - independent and identically distributed (i.i.d. or IID)
- Under our parametric model, the joint distribution of $\left\{Z_{i}\right\}_{i=1}^{n}$ has a density function

$$
\prod_{i=1}^{n} p\left(z_{i} \mid \theta\right)
$$

Maximum Likelihood Estimation

- The likelihood function is defined as

$$
L(\theta)=\prod_{i=1}^{n} p\left(z_{i} \mid \theta\right)
$$

seen as a function of θ

- The maximum likelihood estimator (MLE) is the value $\hat{\theta}$ that maximizes $L(\theta)$

$$
\hat{\theta}=\underset{\theta}{\arg \max } L(\theta)=\underset{\theta}{\arg \max } \log L(\theta)
$$

- We take the log because it is usually easier to work with

$$
\log L(\theta)=\sum_{i=1}^{n} \log p\left(z_{i} \mid \theta\right)
$$

and it leads to the same maximizer

Finding the MLE

- Under some regularity conditions, the MLE is the solution to the score equations

$$
\sum_{i=1}^{n} S_{\theta}\left(z_{i} ; \theta\right)=\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log p\left(z_{i} \mid \theta\right)=\mathbf{0}
$$

- Where the score vector

$$
S_{\theta}(z ; \theta)=\frac{\partial}{\partial \theta} \log p(z \mid \theta)=\left(\begin{array}{c}
\frac{\partial}{\partial \theta_{1}} \log p(z \mid \theta) \\
\frac{\partial}{\partial \theta_{2}} \log p(z \mid \theta) \\
\vdots \\
\frac{\partial}{\partial \theta_{d}} \log p(z \mid \theta)
\end{array}\right)
$$

- Solving the score equations might require iterative methods, such as Newton-Raphson

Why MLEs?

Under regularity conditions, including that the model is correctly specified, i.e., there really exists θ_{0} such that $p\left(z \mid \theta_{0}\right)$ is the true density:

- The MLE is a consistent estimator: $\hat{\theta} \xrightarrow{p} \theta_{0}$
- We know the MLE's asymptotic distribution:

$$
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(\mathbf{0}, \mathcal{I}\left(\theta_{0}\right)^{-1}\right)
$$

where $\mathcal{I}(\theta)$ is Fisher's information matrix

$$
I(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p(Z \mid \theta)\right]=E\left[S_{\theta}(Z ; \theta) S_{\theta}(Z ; \theta)^{T}\right]
$$

- $\mathcal{I}\left(\theta_{0}\right)$ is unknown, but $\mathcal{I}(\hat{\theta}) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right)$
- Heuristically, we say

$$
\hat{\theta} \approx \mathcal{N}\left(\theta_{0}, \mathcal{I}(\hat{\theta})^{-1} / n\right)
$$

Why MLEs?

Under regularity conditions, including that the model is correctly specified, i.e., there really exists θ_{0} such that $p\left(z \mid \theta_{0}\right)$ is the true density:

- The MLE is a consistent estimator: $\hat{\theta} \xrightarrow{p} \theta_{0}$
- We know the MLE's asymptotic distribution:

$$
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(\mathbf{0}, \mathcal{I}\left(\theta_{0}\right)^{-1}\right),
$$

where $\mathcal{I}(\theta)$ is Fisher's information matrix

$$
\mathcal{I}(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p(Z \mid \theta)\right]=E\left[S_{\theta}(Z ; \theta) S_{\theta}(Z ; \theta)^{T}\right]
$$

- $\mathcal{I}\left(\theta_{0}\right)$ is unknown, but $\mathcal{I}(\hat{\theta}) \xrightarrow{P} \mathcal{I}\left(\theta_{0}\right)$
- Heuristically, we say

Why MLEs?

Under regularity conditions, including that the model is correctly specified, i.e., there really exists θ_{0} such that $p\left(z \mid \theta_{0}\right)$ is the true density:

- The MLE is a consistent estimator: $\hat{\theta} \xrightarrow{p} \theta_{0}$
- We know the MLE's asymptotic distribution:

$$
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(\mathbf{0}, \mathcal{I}\left(\theta_{0}\right)^{-1}\right),
$$

where $\mathcal{I}(\theta)$ is Fisher's information matrix

$$
\mathcal{I}(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p(Z \mid \theta)\right]=E\left[S_{\theta}(Z ; \theta) S_{\theta}(Z ; \theta)^{T}\right]
$$

- $\mathcal{I}\left(\theta_{0}\right)$ is unknown, but $\mathcal{I}(\hat{\theta}) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right)$
- Heuristically, we say
$\hat{\theta} \approx \mathcal{N}\left(\theta_{0}, \mathcal{I}(\hat{\theta})^{-1} / n\right)$

Why MLEs?

Under regularity conditions, including that the model is correctly specified, i.e., there really exists θ_{0} such that $p\left(z \mid \theta_{0}\right)$ is the true density:

- The MLE is a consistent estimator: $\hat{\theta} \xrightarrow{p} \theta_{0}$
- We know the MLE's asymptotic distribution:

$$
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(\mathbf{0}, \mathcal{I}\left(\theta_{0}\right)^{-1}\right),
$$

where $\mathcal{I}(\theta)$ is Fisher's information matrix

$$
\mathcal{I}(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p(Z \mid \theta)\right]=E\left[S_{\theta}(Z ; \theta) S_{\theta}(Z ; \theta)^{T}\right]
$$

- $\mathcal{I}\left(\theta_{0}\right)$ is unknown, but $\mathcal{I}(\hat{\theta}) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right)$

Why MLEs?

Under regularity conditions, including that the model is correctly specified, i.e., there really exists θ_{0} such that $p\left(z \mid \theta_{0}\right)$ is the true density:

- The MLE is a consistent estimator: $\hat{\theta} \xrightarrow{p} \theta_{0}$
- We know the MLE's asymptotic distribution:

$$
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(\mathbf{0}, \mathcal{I}\left(\theta_{0}\right)^{-1}\right),
$$

where $\mathcal{I}(\theta)$ is Fisher's information matrix

$$
\mathcal{I}(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p(Z \mid \theta)\right]=E\left[S_{\theta}(Z ; \theta) S_{\theta}(Z ; \theta)^{T}\right]
$$

- $\mathcal{I}\left(\theta_{0}\right)$ is unknown, but $\mathcal{I}(\hat{\theta}) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right)$
- Heuristically, we say

$$
\hat{\theta} \approx \mathcal{N}\left(\theta_{0}, \mathcal{I}(\hat{\theta})^{-1} / n\right)
$$

Why MLEs?

- Sometimes, computing $\mathcal{I}(\theta)$ can be complicated, so we might instead use the observed information matrix

$$
J(\theta)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(z_{i} \mid \theta\right)
$$

- We have that $n^{-1} J(\hat{\theta}) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right)$
* Therefore, we heuristically say

$$
\hat{\theta} \approx \mathcal{N}\left(\theta_{0}, J(\hat{\theta})^{-1}\right)
$$

- This can be used for approximating standard errors for the components of θ and to compute approximately valid confidence intervals
- What if we have missing data? Our observed data are realizations of $\left(Z_{(R)}, R\right)$, not realizations of Z !

Why MLEs?

- Sometimes, computing $\mathcal{I}(\theta)$ can be complicated, so we might instead use the observed information matrix

$$
J(\theta)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(z_{i} \mid \theta\right)
$$

- We have that $n^{-1} J(\hat{\theta}) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right)$
- Therefore, we heuristically say

$$
\hat{\theta} \approx \mathcal{N}\left(\theta_{0}, J(\hat{\theta})^{-1}\right)
$$

- This can be used for approximating standard errors for the components of θ and to compute approximately valid confidence intervals
- What if we have missing data? Our observed data are realizations of $\left(Z_{(R)}, R\right)$, not realizations of Z !

Why MLEs?

- Sometimes, computing $\mathcal{I}(\theta)$ can be complicated, so we might instead use the observed information matrix

$$
J(\theta)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(z_{i} \mid \theta\right)
$$

- We have that $n^{-1} J(\hat{\theta}) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right)$
- Therefore, we heuristically say

$$
\hat{\theta} \approx \mathcal{N}\left(\theta_{0}, J(\hat{\theta})^{-1}\right)
$$

- This can be used for approximating standard errors for the components of θ and to compute approximately valid confidence intervals
- What if we have missing data? Our observed data are realizations of $\left(Z_{(R)}, R\right)$, not realizations of Z !

Why MLEs?

- Sometimes, computing $\mathcal{I}(\theta)$ can be complicated, so we might instead use the observed information matrix

$$
J(\theta)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(z_{i} \mid \theta\right)
$$

- We have that $n^{-1} J(\hat{\theta}) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right)$
- Therefore, we heuristically say

$$
\hat{\theta} \approx \mathcal{N}\left(\theta_{0}, J(\hat{\theta})^{-1}\right)
$$

- This can be used for approximating standard errors for the components of θ and to compute approximately valid confidence intervals
- What if we have missing data? Our observed data are realizations of $\left(Z_{(R)}, R\right)$, not realizations of Z !

Why MLEs?

- Sometimes, computing $\mathcal{I}(\theta)$ can be complicated, so we might instead use the observed information matrix

$$
J(\theta)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(z_{i} \mid \theta\right)
$$

- We have that $n^{-1} J(\hat{\theta}) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right)$
- Therefore, we heuristically say

$$
\hat{\theta} \approx \mathcal{N}\left(\theta_{0}, J(\hat{\theta})^{-1}\right)
$$

- This can be used for approximating standard errors for the components of θ and to compute approximately valid confidence intervals
- What if we have missing data? Our observed data are realizations of $\left(Z_{(R)}, R\right)$, not realizations of Z !

Outline

Review of Maximum Likelihood Estimation

Likelihood-Based Set-Up with Missing Data

Rubin's Original MAR Assumption

Summary

Factorizations of the Full-Data Distribution

Full-data distribution: joint distribution of (Z, R), with density

$$
p(z, r)
$$

Not accessible to us, mere humans, even with infinite samples, but we know it can be factorized in different ways

- Selection model factorization:

$$
p(z, r)=p(r \mid z) p(z)
$$

- $p(z)$ can come from the parametric model we would use if we had complete data, say $p(z \mid \theta)$
- $p(r \mid z)$ can come from a model for the response mechanism,
- Other factorizations are important and lead to alternative approaches for handling missing data. but they will be covered later in the course

Factorizations of the Full-Data Distribution

Full-data distribution: joint distribution of (Z, R), with density

$$
p(z, r)
$$

Not accessible to us, mere humans, even with infinite samples, but we know it can be factorized in different ways

- Selection model factorization:

$$
p(z, r)=p(r \mid z) p(z)
$$

- $p(z)$ can come from the parametric model we would use if we had complete data, say $p(z \mid \theta)$
- $p(r \mid z)$ can come from a model for the response mechanism, $p(r \mid z, \psi)$
- Other factorizations are important and lead to alternative approaches for handling missing data, but they will be covered later in the course

Factorizations of the Full-Data Distribution

Full-data distribution: joint distribution of (Z, R), with density

$$
p(z, r)
$$

Not accessible to us, mere humans, even with infinite samples, but we know it can be factorized in different ways

- Selection model factorization:

$$
p(z, r)=p(r \mid z) p(z)
$$

- $p(z)$ can come from the parametric model we would use if we had complete data, say $p(z \mid \theta)$
- $p(r \mid z)$ can come from a model for the response mechanism, $p(r \mid z, \psi)$
- Other factorizations are important and lead to alternative approaches for handling missing data, but they will be covered later in the course

Parametric Models

- Consider a parametric family for the marginal distribution of Z

$$
\{p(z \mid \theta)\}_{\theta},
$$

and for the response mechanism

$$
\{p(r \mid z, \psi)\}_{\psi}
$$

- We assume separability of θ and ψ : knowledge on the value of θ says nothing about the value of ψ, and vice versa
- All combinations of values of θ and ψ are possible
- The range of values of θ is the same regardless of ψ, and vice versa

Parametric Models

- Consider a parametric family for the marginal distribution of Z

$$
\{p(z \mid \theta)\}_{\theta}
$$

and for the response mechanism

$$
\{p(r \mid z, \psi)\}_{\psi}
$$

- We assume separability of θ and ψ : knowledge on the value of θ says nothing about the value of ψ, and vice versa
- All combinations of values of θ and ψ are possible
- The range of values of θ is the same regardless of ψ, and vice versa

Full-Data Sample

In the full-data world:

- Study variables for individual $i: Z_{i}=\left(Z_{i 1}, \ldots, Z_{i k}\right)$
- Response indicators for individual $i: R_{i}=\left(R_{i 1}, \ldots, R_{i K}\right)$
- $\left\{\left(Z_{i}, R_{i}\right)\right\}_{i=1}^{n}$ are independent and identically distributed
- The realized values are $\left\{\left(z_{i}, r_{i}\right)\right\}_{i=1}^{n}$
- This leads to a full-data likelihood function

$$
L_{\text {full }}(\theta, \psi)=\prod_{i=1}^{n} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right)
$$

Clearly, we cannot work with $L_{\text {full }}(\theta, \psi)$, as it depends on missing data!

Full-Data Sample

In the full-data world:

- Study variables for individual $i: Z_{i}=\left(Z_{i 1}, \ldots, Z_{i k}\right)$
- Response indicators for individual $i: R_{i}=\left(R_{i 1}, \ldots, R_{i K}\right)$
- $\left\{\left(Z_{i}, R_{i}\right)\right\}_{i=1}^{n}$ are independent and identically distributed
- The realized values are $\left\{\left(z_{i}, r_{i}\right)\right\}_{i=1}^{n}$
- This leads to a full-data likelihood function

$$
L_{\text {full }}(\theta, \psi)=\prod_{i=1}^{n} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right)
$$

Clearly, we cannot work with $L_{\text {full }}(\theta, \psi)$, as it depends on missing data!

Full-Data Sample

In the full-data world:

- Study variables for individual $i: Z_{i}=\left(Z_{i 1}, \ldots, Z_{i k}\right)$
- Response indicators for individual $i: R_{i}=\left(R_{i 1}, \ldots, R_{i K}\right)$
- $\left\{\left(Z_{i}, R_{i}\right)\right\}_{i=1}^{n}$ are independent and identically distributed
- The realized values are $\left\{\left(z_{i}, r_{i}\right)\right\}_{i=1}^{n}$
- This leads to a full-data likelihood function

$$
L_{\text {full }}(\theta, \psi)=\prod_{i=1}^{n} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right)
$$

Clearly, we cannot work with $L_{\text {full }}(\theta, \psi)$, as it depends on missing data!

The Observed-Data Distribution

As mentioned in Lecture 2, given that R is random, the observed data are obtained as realizations of

$$
\left(Z_{(R)}, R\right)
$$

We can think of the generative process

The distribution of $\left(Z_{(R)}, R\right)$ is referred to as the observed-data distribution, and it has a probability density denoted by

The Observed-Data Distribution

As mentioned in Lecture 2, given that R is random, the observed data are obtained as realizations of

$$
\left(Z_{(R)}, R\right)
$$

We can think of the generative process

$$
Z \Longrightarrow R \Longrightarrow\left(Z_{(R)}, R\right)
$$

The distribution of $\left(Z_{(R)}, R\right)$ is referred to as the observed-data distribution, and it has a probability density denoted by

The Observed-Data Distribution

As mentioned in Lecture 2, given that R is random, the observed data are obtained as realizations of

$$
\left(Z_{(R)}, R\right)
$$

We can think of the generative process

$$
Z \Longrightarrow R \Longrightarrow\left(Z_{(R)}, R\right)
$$

The distribution of $\left(Z_{(R)}, R\right)$ is referred to as the observed-data distribution, and it has a probability density denoted by

$$
p\left(z_{(r)}, r\right)
$$

The Observed-Data Distribution

To derive $p\left(z_{(r)}, r\right)$, we need to integrate $p(z, r)$ over the possible missing values $z_{(\bar{r})}$, denoted $\mathcal{Z}_{(\bar{r})}$

$$
\begin{aligned}
p\left(z_{(r)}, r\right) & =\int_{\mathcal{Z}_{(\bar{r})}} p(z, r) \mu\left(d z_{(\bar{r})}\right) \\
& =\int_{\mathbb{Z}_{(\vec{r})}} p(r \mid z) p(z) \mu\left(d z_{(\bar{r})}\right) \\
& = \begin{cases}\int_{z_{(F)}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{F})} & \text { if } z \text { is continuous } \\
\sum_{z_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) \quad \text { if } z \text { is discrete }\end{cases}
\end{aligned}
$$

From now on, we'll write $\int_{\mathcal{Z}_{(\bar{r})}} p(z, r) d z_{(\bar{r})}$ instead of $\int_{\mathcal{Z}_{(\bar{r})}} p(z, r) \mu\left(d z_{(\bar{r})}\right)$

The Observed-Data Distribution

To derive $p\left(z_{(r)}, r\right)$, we need to integrate $p(z, r)$ over the possible missing values $Z_{(\bar{r})}$, denoted $\mathcal{Z}_{(\bar{r})}$

$$
\begin{aligned}
p\left(z_{(r)}, r\right) & =\int_{\mathcal{Z}_{(\bar{r})}} p(z, r) \mu\left(d z_{(\bar{r})}\right) \\
& =\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z) p(z) \mu\left(d z_{(\bar{r})}\right) \\
& = \begin{cases}\int_{z_{(F)}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})} & \text { if } z \text { is continuous } \\
\sum_{z_{(\bar{r}}} p(r \mid z, \psi) p(z \mid \theta) \quad \text { if } z \text { is discrete }\end{cases}
\end{aligned}
$$

The Observed-Data Distribution

To derive $p\left(z_{(r)}, r\right)$, we need to integrate $p(z, r)$ over the possible missing values $z_{(\vec{r})}$, denoted $\mathcal{Z}_{(\vec{r})}$

$$
\begin{aligned}
p\left(z_{(r)}, r\right) & =\int_{\mathcal{Z}_{(\bar{r})}} p(z, r) \mu\left(d z_{(\bar{r})}\right) \\
& =\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z) p(z) \mu\left(d z_{(\bar{r})}\right) \\
& = \begin{cases}\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})} & \text { if } Z \text { is continuous } \\
\sum_{\mathcal{Z}_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) & \text { if } Z \text { is discrete }\end{cases}
\end{aligned}
$$

From now on, we'll write $\int_{\mathcal{Z}_{(\bar{r})}} p(z, r) d z_{(\bar{r})}$ instead of $\int_{\mathcal{Z}_{(\bar{r})}} p(z, r) \mu\left(d z_{(\bar{r})}\right)$

The Observed-Data Distribution

To derive $p\left(z_{(r)}, r\right)$, we need to integrate $p(z, r)$ over the possible missing values $z_{(\bar{r})}$, denoted $\mathcal{Z}_{(\bar{r})}$

$$
\begin{aligned}
p\left(z_{(r)}, r\right) & =\int_{\mathcal{Z}_{(\bar{r})}} p(z, r) \mu\left(d z_{(\bar{r})}\right) \\
& =\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z) p(z) \mu\left(d z_{(\bar{r})}\right) \\
& = \begin{cases}\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})} & \text { if } Z \text { is continuous } \\
\sum_{\mathcal{Z}_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) & \text { if } Z \text { is discrete }\end{cases}
\end{aligned}
$$

From now on, we'll write $\int_{\mathcal{Z}_{(\bar{r})}} p(z, r) d z_{(\bar{r})}$ instead of $\int_{\mathcal{Z}_{(\bar{r})}} p(z, r) \mu\left(d z_{(\bar{r})}\right)$

Example of Observed-Data Distribution

HW2: problem 6 of HW1 continued: say $K=2, Z_{1} \in\{1,2\}$, $Z_{2} \in\{A, B\}, R \in\{0,1\}^{2}$.

- Write down all the elements of the sample space of $\left(Z_{(R)}, R\right)$
- Say the full-data probability density is given by

$$
p(z, r) \equiv p\left(z_{1}, z_{2}, r_{1}, r_{2}\right) \equiv \pi_{z_{1}, z_{2}, r_{1}, r_{2}}
$$

Derive $p\left(z_{(r)}, r\right)$ for all elements $\left(z_{(r)}, r\right)$ in the sample space of $\left(Z_{(R)}, R\right)$

Example of Observed-Data Distribution

HW2: say $K=2,\left(Z_{1}, Z_{2}\right)^{T} \sim \mathcal{N}(\mu, \Sigma), R \in\{0,1\}^{2}$.

- Describe the sample space of $\left(Z_{(R)}, R\right)$ (problem 7 of HW1)
- Say $p(r \mid z)=p(r)$. Derive $p\left(z_{(r)}, r\right)$ for all $r \in\{0,1\}^{2}$
- Say $R_{1} \Perp R_{2} \mid Z_{\text {, }}$

$$
\operatorname{logit} p\left(R_{j}=1 \mid z\right)=\beta_{j 0}+\beta_{j 1} z_{1}+\beta_{j 2} z_{2}, \quad j=1,2
$$

Derive $p\left(z_{(r)}, r\right)$ for all $r \in\{0,1\}^{2}$

Example of Observed-Data Distribution

HW2: say $K=2,\left(Z_{1}, Z_{2}\right)^{T} \sim \mathcal{N}(\mu, \Sigma), R \in\{0,1\}^{2}$.

- Describe the sample space of $\left(Z_{(R)}, R\right)$ (problem 7 of HW1)
- Say $p(r \mid z)=p(r)$. Derive $p\left(z_{(r)}, r\right)$ for all $r \in\{0,1\}^{2}$
- Say $R_{1} \Perp R_{2} \mid Z$,

$$
\operatorname{logit} p\left(R_{j}=1 \mid z\right)=\beta_{j 0}+\beta_{j 1} z_{1}+\beta_{j 2} z_{2}, \quad j=1,2
$$

Derive $p\left(z_{(r)}, r\right)$ for all $r \in\{0,1\}^{2}$

Likelihood-Based Set-Up

- The random sample we are actually working with is

$$
\left\{\left(Z_{i\left(R_{i}\right)}, R_{i}\right)\right\}_{i=1}^{n}
$$

- The realized values are actually

$$
\left\{\left(z_{i}\left(r_{i}\right), r_{i}\right)\right\}^{n}=1
$$

- As before, we can think of the generative process, for each i :

$$
z_{i} \Longrightarrow R_{i} \Longrightarrow\left(Z_{i\left(R_{i}\right)}, R_{i}\right)
$$

- What is the observed-data likelihood function?
- We need to integrate the full-data likeliihood $L_{\text {full }}(\theta, \psi)$ over the possible values of each $z_{i\left(\bar{r}_{i}\right)}$

Likelihood-Based Set-Up

- The random sample we are actually working with is

$$
\left\{\left(Z_{i\left(R_{i}\right)}, R_{i}\right)\right\}_{i=1}^{n}
$$

- The realized values are actually

$$
\left\{\left(z_{i\left(r_{i}\right)}, r_{i}\right)\right\}_{i=1}^{n}
$$

- As before, we can think of the generative process, for each i :

$$
Z_{i} \Longrightarrow R_{i} \Longrightarrow\left(Z_{i\left(R_{i}\right)}, R_{i}\right)
$$

- What is the observed-data likelihood function?
- We need to integrate the full-data likeli'hood $L_{\text {full }}(\theta, \psi)$ over the possible values of each $z_{i\left(\bar{F}_{i}\right)}$

Likelihood-Based Set-Up

- The random sample we are actually working with is

$$
\left\{\left(Z_{i\left(R_{i}\right)}, R_{i}\right)\right\}_{i=1}^{n}
$$

- The realized values are actually

$$
\left\{\left(z_{i\left(r_{i}\right)}, r_{i}\right)\right\}_{i=1}^{n}
$$

- As before, we can think of the generative process, for each i :

$$
Z_{i} \Longrightarrow R_{i} \Longrightarrow\left(Z_{i\left(R_{i}\right)}, R_{i}\right)
$$

- What is the observed-data likelihood function?
- We need to integrate the full-data likelihood $L_{\text {full }}(\theta, \psi)$ over the possible values of each $z_{i\left(\bar{r}_{i}\right)}$

Likelihood-Based Set-Up

- The random sample we are actually working with is

$$
\left\{\left(Z_{i\left(R_{i}\right)}, R_{i}\right)\right\}_{i=1}^{n}
$$

- The realized values are actually

$$
\left\{\left(z_{i\left(r_{i}\right)}, r_{i}\right)\right\}_{i=1}^{n}
$$

- As before, we can think of the generative process, for each i :

$$
Z_{i} \Longrightarrow R_{i} \Longrightarrow\left(Z_{i\left(R_{i}\right)}, R_{i}\right)
$$

- What is the observed-data likelihood function?
- We need to integrate the full-data likelihood $L_{\text {full }}(\theta, \psi)$ over the possible values of each $z_{i\left(\bar{r}_{i}\right)}$

Likelihood-Based Set-Up

- The random sample we are actually working with is

$$
\left\{\left(Z_{i\left(R_{i}\right)}, R_{i}\right)\right\}_{i=1}^{n}
$$

- The realized values are actually

$$
\left\{\left(z_{i\left(r_{i}\right)}, r_{i}\right)\right\}_{i=1}^{n}
$$

- As before, we can think of the generative process, for each i :

$$
Z_{i} \Longrightarrow R_{i} \Longrightarrow\left(Z_{i\left(R_{i}\right)}, R_{i}\right)
$$

- What is the observed-data likelihood function?
- We need to integrate the full-data likelihood $L_{\text {full }}(\theta, \psi)$ over the possible values of each $z_{i\left(\bar{r}_{i}\right)}$

Likelihood-Based Set-Up

- Since we are assuming i.i.d. data, let's focus on a generic term of the full-data likelihood

$$
\ell_{\text {full }}(\theta, \psi)=p(r \mid z, \psi) p(z \mid \theta)
$$

to facilitate the notation

- We cannot work with $\ell_{\text {full }}(\theta, \psi)$ since we don't observe a complete realization z, but rather $z_{(r)}$
> We need to integrate over the missing data to derive the observed-data likelihood

$$
\ell_{o b s}(\theta, \psi)=\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})}
$$

- $\ell_{\text {obs }}(\theta, \psi)$ does not depend on missing data
- To obtain likel:hood-based inferences on θ, it seems we need to pass through the specification of $p(r \mid z, \psi)$
- Typically, $p(r \mid z, \psi)$ is not of scientific interest so it can be seen as a nuisance

Likelihood-Based Set-Up

- Since we are assuming i.i.d. data, let's focus on a generic term of the full-data likelihood

$$
\ell_{f u l l}(\theta, \psi)=p(r \mid z, \psi) p(z \mid \theta)
$$

to facilitate the notation

- We cannot work with $\ell_{f u l \prime}(\theta, \psi)$ since we don't observe a complete realization z, but rather $z_{(r)}$
- We need to integrate over the missing data to derive the observed-data likelihood

$$
\ell_{\mathrm{obs}}(0, \psi)=\int_{z_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{F})}
$$

- $\ell_{\text {obs }}(\theta, \psi)$ does not depend on missing data
- To obtain likelihood-based inferences on θ, it seems we need to pass through the specification of $p(r \mid z, \psi)$
- Typically, $p(r \mid z, \psi)$ is not of scientific interest so it can be seen as a nuisance

Likelihood-Based Set-Up

- Since we are assuming i.i.d. data, let's focus on a generic term of the full-data likelihood

$$
\ell_{\text {full }}(\theta, \psi)=p(r \mid z, \psi) p(z \mid \theta)
$$

to facilitate the notation

- We cannot work with $\ell_{f u l \prime}(\theta, \psi)$ since we don't observe a complete realization z, but rather $z_{(r)}$
- We need to integrate over the missing data to derive the observed-data likelihood

$$
\ell_{o b s}(\theta, \psi)=\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})}
$$

$\ell_{\text {obs }}(\theta, \psi)$ does not depend on missing data

- To obtain likelihood-based inferences on θ, it seems we need to pass through the specification of $p(r \mid z, \psi)$
- Typically, $p(r \mid z, \psi)$ is not of scientific interest so it can be seen as a nuisance

Likelihood-Based Set-Up

- Since we are assuming i.i.d. data, let's focus on a generic term of the full-data likelihood

$$
\ell_{\text {full }}(\theta, \psi)=p(r \mid z, \psi) p(z \mid \theta)
$$

to facilitate the notation

- We cannot work with $\ell_{\text {full }}(\theta, \psi)$ since we don't observe a complete realization z, but rather $z_{(r)}$
- We need to integrate over the missing data to derive the observed-data likelihood

$$
\ell_{o b s}(\theta, \psi)=\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})}
$$

- $\ell_{\text {obs }}(\theta, \psi)$ does not depend on missing data
- To obtain likelihood-based inferences on θ, it seems we need to pass through the specification of $p(r \mid z, \psi)$

Likelihood-Based Set-Up

- Since we are assuming i.i.d. data, let's focus on a generic term of the full-data likelihood

$$
\ell_{\text {full }}(\theta, \psi)=p(r \mid z, \psi) p(z \mid \theta)
$$

to facilitate the notation

- We cannot work with $\ell_{f u l l}(\theta, \psi)$ since we don't observe a complete realization z, but rather $z_{(r)}$
- We need to integrate over the missing data to derive the observed-data likelihood

$$
\ell_{o b s}(\theta, \psi)=\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})}
$$

- $\ell_{\text {obs }}(\theta, \psi)$ does not depend on missing data
- To obtain likelihood-based inferences on θ, it seems we need to pass through the specification of $p(r \mid z, \psi)$

Likelihood-Based Set-Up

- Since we are assuming i.i.d. data, let's focus on a generic term of the full-data likelihood

$$
\ell_{f u l l}(\theta, \psi)=p(r \mid z, \psi) p(z \mid \theta)
$$

to facilitate the notation

- We cannot work with $\ell_{f u l l}(\theta, \psi)$ since we don't observe a complete realization z, but rather $z_{(r)}$
- We need to integrate over the missing data to derive the observed-data likelihood

$$
\ell_{o b s}(\theta, \psi)=\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})}
$$

- $\ell_{\text {obs }}(\theta, \psi)$ does not depend on missing data
- To obtain likelihood-based inferences on θ, it seems we need to pass through the specification of $p(r \mid z, \psi)$
- Typically, $p(r \mid z, \psi)$ is not of scientific interest so it can be seen as a nuisance

Developing the Missing at Random (MAR) Assumption

Rubin's (1976, Biometrika) fundamental motivation:

- How can we get rid of this nuisance $p(r \mid z, \psi)$?
- When are inferences for θ based on $\int_{\mathcal{Z}_{(F)}} p(z \mid \theta) d z_{(F)}$ valid?

Stare at the observed-data likelihood:

$$
\operatorname{lobs}_{\text {obs }}(\theta, \psi)=\int_{z_{(\gamma)}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\digamma)}
$$

Developing the Missing at Random (MAR) Assumption

Rubin's (1976, Biometrika) fundamental motivation:

- How can we get rid of this nuisance $p(r \mid z, \psi)$?
- When are inferences for θ based on $\int_{\mathcal{Z}_{(F)}} p(z \mid \theta) d z_{(\vec{F})}$ valid?

Stare at the observed-data likelihood:

Developing the Missing at Random (MAR) Assumption

Rubin's (1976, Biometrika) fundamental motivation:

- How can we get rid of this nuisance $p(r \mid z, \psi)$?
- When are inferences for θ based on $\int_{\mathcal{Z}_{(F)}} p(z \mid \theta) d z_{(\vec{F})}$ valid?

Stare at the observed-data likelihood:

$$
\ell_{o b s}(\theta, \psi)=\int_{\mathcal{Z}_{(\vec{F})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})}
$$

The Missing at Random (MAR) Assumption

The MAR assumption, in terms of $p(r \mid z, \psi)$ says

$$
p(r \mid z, \psi)=p\left(r \mid z_{(r)}, \psi\right)
$$

(we'll soon talk about the formal definition)

Ignorability Under MAR

- Under the MAR assumption:

$$
\begin{aligned}
\ell_{\text {obs }}(\theta, \psi) & =\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})} \\
& \stackrel{\operatorname{MAR}}{=} \int_{\mathcal{Z}_{(\bar{r})}} p\left(r \mid z_{(r)}, \psi\right) p(z \mid \theta) d z_{(\bar{r})} \\
& =p\left(r \mid z_{(r)}, \psi\right) \int_{z_{(r)}} p(z \mid \theta) d z_{(\bar{r})} \\
& =p\left(r \mid z_{(r)}, \psi\right) p\left(z_{(r)} \mid \theta\right)
\end{aligned}
$$

- Under MAR, likelihood-based inference can be based on

$$
\ell_{o b s}(\theta)=p\left(z_{(r)} \mid \theta\right)=\int_{z_{(F)}} p(z \mid \theta) d z_{(F)}
$$

- Missingness mechanism is ignorable since there's no need to specify $p(r \mid z, \psi)$ if we only care about θ

Ignorability Under MAR

- Under the MAR assumption:

$$
\begin{aligned}
\ell_{\text {obs }}(\theta, \psi) & =\int_{\mathcal{Z}_{(\bar{r})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})} \\
& \stackrel{\operatorname{MAR}}{=} \int_{\mathcal{Z}_{(\vec{r})}} p\left(r \mid z_{(r)}, \psi\right) p(z \mid \theta) d z_{(\bar{r})} \\
& =p\left(r \mid z_{(r)}, \psi\right) \int_{\mathcal{Z}_{(r)}} p(z \mid \theta) d z_{(\bar{r})} \\
& =p\left(r \mid z_{(r)}, \psi\right) p\left(z_{(r)} \mid \theta\right)
\end{aligned}
$$

- Under MAR, likelihood-based inference can be based on

$$
l_{o b s}(\theta)=p\left(z_{(r)} \mid \theta\right)=\int_{z_{(F)}} p(z \mid \theta) d z_{(F)}
$$

- Missingness mechanism is ignorable since there's no need to specify $p(r \mid z, \psi)$ if we only care about θ

Ignorability Under MAR

- Under the MAR assumption:

$$
\begin{aligned}
\ell_{\text {obs }}(\theta, \psi) & =\int_{\mathcal{Z}_{(F)}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})} \\
& \stackrel{\operatorname{MAR}}{=} \int_{\mathcal{Z}_{(\bar{r}}} p\left(r \mid z_{(r)}, \psi\right) p(z \mid \theta) d z_{(\bar{r})} \\
& =p\left(r \mid z_{(r)}, \psi\right) \int_{\mathcal{Z}_{(F)}} p(z \mid \theta) d z_{(\vec{r})} \\
& =p\left(r \mid z_{(r)}, \psi\right) p\left(z_{(r)} \mid \theta\right)
\end{aligned}
$$

- Under MAR, likelihood-based inference can be based on

$$
l_{\text {obs }}(\theta)=p\left(z_{(r)} \mid \theta\right)=\int_{z_{(f)}} p(z \mid \theta) d z_{(F)}
$$

- Missingness mechanism is ignorable since there's no need to specify $p(r \mid z, \psi)$ if we only care about θ

Ignorability Under MAR

- Under the MAR assumption:

$$
\begin{aligned}
\ell_{\text {obs }}(\theta, \psi) & =\int_{\mathcal{Z}_{(F)}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\bar{r})} \\
& \stackrel{\operatorname{MAR}}{=} \int_{\mathcal{Z}_{(F)}} p\left(r \mid z_{(r)}, \psi\right) p(z \mid \theta) d z_{(\bar{r})} \\
& =p\left(r \mid z_{(r)}, \psi\right) \int_{\mathcal{Z}_{(r)}} p(z \mid \theta) d z_{(\vec{r})} \\
& =p\left(r \mid z_{(r)}, \psi\right) p\left(z_{(r)} \mid \theta\right)
\end{aligned}
$$

- Under MAR, likelihood-based inference can be based on

$$
\ell_{o b s}(\theta)=p\left(z_{(r)} \mid \theta\right)=\int_{\mathcal{Z}_{(r)}} p(z \mid \theta) d z_{(\bar{r})}
$$

- Missingness mechanism is ignorable since there's no need to specify $p(r \mid z, \psi)$ if we only care about θ

Ignorability Under MAR

- Under the MAR assumption:

$$
\begin{aligned}
\ell_{\text {obs }}(\theta, \psi) & =\int_{\mathcal{Z}_{(\vec{r})}} p(r \mid z, \psi) p(z \mid \theta) d z_{(\vec{r})} \\
& \stackrel{\operatorname{MAR}}{=} \int_{\mathcal{Z}_{(r)}} p\left(r \mid z_{(r)}, \psi\right) p(z \mid \theta) d z_{(\vec{r})} \\
& =p\left(r \mid z_{(r)}, \psi\right) \int_{\mathcal{Z}_{(F)}} p(z \mid \theta) d z_{(\vec{r})} \\
& =p\left(r \mid z_{(r)}, \psi\right) p\left(z_{(r)} \mid \theta\right)
\end{aligned}
$$

- Under MAR, likelihood-based inference can be based on

$$
\ell_{o b s}(\theta)=p\left(z_{(r)} \mid \theta\right)=\int_{\mathcal{Z}_{(\bar{r})}} p(z \mid \theta) d z_{(\bar{r})}
$$

- Missingness mechanism is ignorable since there's no need to specify $p(r \mid z, \psi)$ if we only care about θ

Ignorability

From Little \& Rubin (2002, Definition 6.4):
The missing-data mechanism is ignorable for likelihood inference if:
(a) MAR holds
(b) The parameters θ and ψ are separable

Maximum-Likelihood Estimation

The MLE for θ is obtained from maximizing

$$
L_{o b s}(\theta, \psi)=\prod_{i=1}^{n} \int_{\mathcal{Z}_{\left(\bar{F}_{i}\right)}} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right) d z_{i\left(\bar{r}_{i}\right)}
$$

- It might be difficult to work with these expressions, even under MAR; the EM algorithm might help! (next class)
- Note that the MLE is the same whether we assume MAR, MCAR, or anything that satisfies ignorability!

Maximum-Likelihood Estimation

The MLE for θ is obtained from maximizing

$$
\begin{aligned}
L_{o b s}(\theta, \psi) & =\prod_{i=1}^{n} \int_{\mathcal{Z}_{\left(\bar{F}_{i}\right)}} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right) d z_{i\left(\bar{r}_{i}\right)} \\
& \stackrel{\text { MAR }}{=} \underbrace{\left[\prod_{i=1}^{n} p\left(r_{i} \mid z_{i\left(r_{i}\right)}, \psi\right)\right]}_{\text {Can be ignored }} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{\left(\bar{r}_{i}\right)}} p\left(z_{i} \mid \theta\right) d z_{i\left(\bar{r}_{i}\right)}\right]}_{\text {Provides MLE of } \theta \text { under MAR }}
\end{aligned}
$$

- It might be difficult to work with these expressions, even under MAR; the EM algorithm might help! (next class)
- Note that the MLE is the same whether we assume MAR, MCAR, or anything that satisfies ignorability!

Maximum-Likelihood Estimation

The MLE for θ is obtained from maximizing

$$
\begin{aligned}
& L_{o b s}(\theta, \psi)=\prod_{i=1}^{n} \int_{\mathcal{Z}_{\left(\bar{r}_{i}\right)}} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right) d z_{i\left(\bar{r}_{i}\right)} \\
& \stackrel{\text { MAR }}{=} \underbrace{\left[\prod_{i=1}^{n} p\left(r_{i} \mid z_{i\left(r_{i}\right)}, \psi\right)\right]}_{\text {Can be ignored }} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{\left(\bar{r}_{i}\right)}} p\left(z_{i} \mid \theta\right) d z_{i\left(\bar{r}_{i}\right)}\right]}_{\text {Provides MLE of } \theta \text { under MAR }}
\end{aligned}
$$

- It might be difficult to work with these expressions, even under MAR; the EM algorithm might help! (next class)
- Note that the MLE is the same whether we assume MAR, MCAR, or anything that satisfies ignorability!

Maximum-Likelihood Estimation

The MLE for θ is obtained from maximizing

$$
\begin{aligned}
L_{o b s}(\theta, \psi) & =\prod_{i=1}^{n} \int_{\mathcal{Z}_{\left(\bar{r}_{i}\right)}} p\left(r_{i} \mid z_{i}, \psi\right) p\left(z_{i} \mid \theta\right) d z_{i\left(\bar{r}_{i}\right)} \\
& \stackrel{\text { MAR }}{=} \underbrace{\left[\prod_{i=1}^{n} p\left(r_{i} \mid z_{i\left(r_{i}\right)}, \psi\right)\right]}_{\text {Can be ignored }} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{\left(\bar{r}_{i}\right)}} p\left(z_{i} \mid \theta\right) d z_{i\left(\bar{r}_{i}\right)}\right]}_{\text {Provides MLE of } \theta \text { under MAR }}
\end{aligned}
$$

- It might be difficult to work with these expressions, even under MAR; the EM algorithm might help! (next class)
- Note that the MLE is the same whether we assume MAR, MCAR, or anything that satisfies ignorability!

Observed-Data Score Vector and Fisher Information

- Davidian and Tsiatis, in pages 60-61, present expressions equivalent to the following
- The score vector

$$
S_{\theta}\left(r, z_{(r)} ; \theta\right)=\frac{\partial}{\partial \theta} \log p\left(z_{(r)} \mid \theta\right)
$$

- The Fisher's information matrix

$$
\mathcal{I}(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(Z_{(R)} \mid \theta\right)\right]
$$

- The observed-information matrix

$$
J(\theta)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(z_{i\left(r_{i}\right)} \mid \theta\right)
$$

- Davidian and Tsiatis provide alternative expressions for these quantities that require some algebraic manipulations (check on your own)
- Note that while we can ignore $p\left(r \mid z_{(r)}, \psi\right)$ to compute the MLE, the expectation to obtain $\mathcal{I}(\theta)$ is over $\left(R, Z_{(R)}\right)$
- If response mechanism is not ignorable, these quantities need to be derived from $L_{o b s}(\theta, \psi)$!

Observed-Data Score Vector and Fisher Information

- Davidian and Tsiatis, in pages 60-61, present expressions equivalent to the following
- The score vector

$$
S_{\theta}\left(r, z_{(r)} ; \theta\right)=\frac{\partial}{\partial \theta} \log p\left(z_{(r)} \mid \theta\right)
$$

- The Fisher's information matrix

$$
\mathcal{I}(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(Z_{(R)} \mid \theta\right)\right]
$$

- The observed-information matrix

$$
J(\theta)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(z_{i\left(r_{i}\right)} \mid \theta\right)
$$

- Davidian and Tsiatis provide alternative expressions for these quantities that require some algebraic manipulations (check on your own)
- Note that while we can ignore $p\left(r \mid z_{(r)}, \psi\right)$ to compute the MLE, the expectation to obtain $\mathcal{I}(\theta)$ is over $\left(R, Z_{(R)}\right)$
- If response mechanism is not ignorable, these quantities need to be derived from $\operatorname{Lobs}(\theta, \psi)$!

Observed-Data Score Vector and Fisher Information

- Davidian and Tsiatis, in pages 60-61, present expressions equivalent to the following
- The score vector

$$
S_{\theta}\left(r, z_{(r)} ; \theta\right)=\frac{\partial}{\partial \theta} \log p\left(z_{(r)} \mid \theta\right)
$$

- The Fisher's information matrix

$$
\mathcal{I}(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(Z_{(R)} \mid \theta\right)\right]
$$

- The observed-information matrix

$$
J(\theta)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(z_{i\left(r_{i}\right)} \mid \theta\right)
$$

- Davidian and Tsiatis provide alternative expressions for these quantities that require some algebraic manipulations (check on your own)
- Note that while we can ignore $p\left(r \mid z_{(r)}, \psi\right)$ to compute the MLE, the expectation to obtain $\mathcal{I}(\theta)$ is over $\left(R, Z_{(R)}\right)$
\rightarrow If response mechanism is not ignorable, these quantities need to be derived from $L_{o b s}(\theta, \psi)$!

Observed-Data Score Vector and Fisher Information

- Davidian and Tsiatis, in pages 60-61, present expressions equivalent to the following
- The score vector

$$
S_{\theta}\left(r, z_{(r)} ; \theta\right)=\frac{\partial}{\partial \theta} \log p\left(z_{(r)} \mid \theta\right)
$$

- The Fisher's information matrix

$$
\mathcal{I}(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(Z_{(R)} \mid \theta\right)\right]
$$

- The observed-information matrix

$$
J(\theta)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p\left(z_{i\left(r_{i}\right)} \mid \theta\right)
$$

- Davidian and Tsiatis provide alternative expressions for these quantities that require some algebraic manipulations (check on your own)
- Note that while we can ignore $p\left(r \mid z_{(r)}, \psi\right)$ to compute the MLE, the expectation to obtain $\mathcal{I}(\theta)$ is over $\left(R, Z_{(R)}\right)$
- If response mechanism is not ignorable, these quantities need to be derived from $L_{o b s}(\theta, \psi)$!

Outline

Review of Maximum Likelihood Estimation
 Likelihood-Based Set-Up with Missing Data

Rubin's Original MAR Assumption

Summary

Discussion on What the MAR Assumption Says

- Rubin (1976, Biometrika) introduced a slightly different the idea of MAR
- People use and understand something else - the difference is subtle
- Does it matter?

The Original MAR Assumption

Rubin (1976, Biometrika):

- r: response indicators for your entire dataset, realized, fixed
- $\mathbf{z}_{(r)}$: observed values for entire dataset, realized, fixed
- Rubin's original definition says:

Missing data $\mathbf{z}_{(\bar{r})}$ are MAR if

$$
p\left(r \mid z_{(r)}, z_{(\bar{r})}, \phi\right)=p\left(r \mid z_{(r)}, z_{(\bar{r})}^{\prime}, \phi\right)
$$

for all possible values $\mathbf{z}_{(\bar{r})}, \mathbf{z}_{(\bar{r})}^{\prime}$ and ϕ
\Rightarrow This doesn't say anything about other $\mathbf{r}^{\prime} \neq \mathrm{r}$ or other $\mathbf{z}_{(\mathrm{r})}^{\prime} \neq \mathbf{z}_{(\mathrm{r})}$

- It's an assumption on the probability of observing what I observed, not about what I could have observed

The Original MAR Assumption

Rubin (1976, Biometrika):

- r: response indicators for your entire dataset, realized, fixed
- $\mathbf{z}_{(r)}$: observed values for entire dataset, realized, fixed
- Rubin's original definition says:

Missing data $\mathbf{z}_{(\bar{r})}$ are MAR if

$$
p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \mathbf{z}_{(\vec{r})}, \phi\right)=p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \mathbf{z}_{(\vec{r})}^{\prime}, \phi\right)
$$

for all possible values $\mathbf{Z}_{(\vec{r})}, \mathbf{z}_{(\vec{r})}^{\prime}$ and ϕ

- This doesn't say anything about other $r^{\prime} \neq r$ or other $z_{(r)}^{\prime} \neq z_{(r)}$
- It's an assumption on the probability of observing what I observed, not about what I could have observed

The Original MAR Assumption

Rubin (1976, Biometrika):

- r: response indicators for your entire dataset, realized, fixed
- $\mathbf{z}_{(r)}$: observed values for entire dataset, realized, fixed
- Rubin's original definition says:

Missing data $\mathbf{z}_{(\bar{r})}$ are MAR if

$$
p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \mathbf{z}_{(\vec{r})}, \phi\right)=p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \mathbf{z}_{(\vec{r})}^{\prime}, \phi\right)
$$

for all possible values $\mathbf{z}_{(\vec{r})}, \mathbf{z}_{(\vec{r})}^{\prime}$ and ϕ

- This doesn't say anything about other $\mathbf{r}^{\prime} \neq \mathbf{r}$ or other $\mathbf{z}_{(r)}^{\prime} \neq \mathbf{z}_{(r)}$
- It's an assumption on the probability of observing what I observed, not about what I could have observed

The Original MAR Assumption

Rubin (1976, Biometrika):

- \mathbf{r} : response indicators for your entire dataset, realized, fixed
- $\mathbf{z}_{(r)}$: observed values for entire dataset, realized, fixed
- Rubin's original definition says:

Missing data $\mathbf{z}_{(\vec{r})}$ are MAR if

$$
p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \mathbf{z}_{(\vec{r})}, \phi\right)=p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \mathbf{z}_{(\vec{r})}^{\prime}, \phi\right)
$$

for all possible values $\mathbf{z}_{(\vec{r})}, \mathbf{z}_{(\vec{r})}^{\prime}$ and ϕ

- This doesn't say anything about other $\mathbf{r}^{\prime} \neq \mathbf{r}$ or other $\mathbf{z}_{(r)}^{\prime} \neq \mathbf{z}_{(r)}$
- It's an assumption on the probability of observing what I observed, not about what I could have observed

Example: the Original MAR Assumption

Example: let's say I try to measure Gender, Age, and Income on two individuals
$r_{1}=110, \quad z_{1}=(F, 29,100 K), \quad r_{2}=010, \quad z_{2}=(M, 40,80 K)$

- Missing data: $\quad z_{1\left(\overline{r_{1}}\right)}=(100 \mathrm{~K}), \quad z_{2\left(\overline{\bar{F}_{2}}\right)}=(\mathrm{M}, 80 \mathrm{~K})$
- In Rubin's original definition the missing data are MAR if

$$
p\left(R_{1}=110, R_{2}=010 \mid Z_{1}=(F, 29,100 K), Z_{2}=(M, 40,80 K)\right)=
$$

$$
p\left(R_{1}=110, R_{2}=010 \mid Z_{1}=(F, 29, a), Z_{2}=(b, 40, c)\right),
$$

for any values of a, b, c

- Rubin's original MAR assumption doesn't say anything about

$$
p\left(R_{1}=r_{1}^{\prime}, R_{2}=r_{2}^{\prime} \mid z_{1}^{\prime}, z_{2}^{\prime}\right)
$$

$$
\text { for } r_{1}^{\prime} \neq 110, \text { or } r_{2}^{\prime} \neq 010, \text { or } z_{1\left(r_{1}\right)}^{\prime} \neq(F, 29) \text { or } z_{2\left(r_{2}\right)}^{\prime} \neq(40)
$$

Example: the Original MAR Assumption

Example: let's say I try to measure Gender, Age, and Income on two individuals

- $r_{1}=110, \quad z_{1}=(F, 29,100 K), \quad r_{2}=010, \quad z_{2}=(M, 40,80 K)$
- Missing data: $\quad z_{1\left(\bar{r}_{1}\right)}=(100 \mathrm{~K}), \quad z_{2\left(\overline{F_{2}}\right)}=(\mathrm{M}, 80 \mathrm{~K})$
- In Rubin's original definition, the missing data are MAR if $p\left(R_{1}=110, R_{2}=010 \mid Z_{1}=(F, 29,100 K), Z_{2}=(M, 40,80 K)\right)=$

$$
p\left(R_{1}=110, R_{2}=010 \mid Z_{1}=(F, 29, a), Z_{2}=(b, 40, c)\right),
$$

for any values of a, b, c

- Rubin's original MAR assumption doesn't say anything about

$$
p\left(R_{1}=r_{1}^{\prime}, R_{2}=r_{2}^{\prime} \mid z_{1}^{\prime}, z_{2}^{\prime}\right)
$$

for $r_{1}^{\prime} \neq 110$, or $r_{2}^{\prime} \neq 010$, or $z_{1\left(r_{1}\right)}^{\prime} \neq(F, 29)$ or $z_{2\left(r_{2}\right)}^{\prime} \neq(40)$

Example: the Original MAR Assumption

Example: let's say I try to measure Gender, Age, and Income on two individuals

- $r_{1}=110, \quad z_{1}=(F, 29,100 K), \quad r_{2}=010, \quad z_{2}=(M, 40,80 K)$
- Missing data: $\quad z_{1\left(\bar{r}_{1}\right)}=(100 K), \quad z_{2\left(\bar{r}_{2}\right)}=(M, 80 K)$
- In Rubin's original definition, the missing data are MAR if $p\left(R_{1}=110, R_{2}=010 \mid Z_{1}=(F, 29,100 K), Z_{2}=(M, 40,80 K)\right)=$ $p\left(R_{1}=110, R_{2}=010 \mid Z_{1}=(F, 20, a), Z_{2}=(b, 10, c)\right)$,
for any values of a, b, c
- Rubin's original MAR assumption doesn't say anything about

$$
p\left(R_{1}=r_{1}^{\prime}, R_{2}=r_{2}^{\prime} \mid z_{1}^{\prime}, z_{2}^{\prime}\right)
$$

for $r_{1}^{\prime} \neq 110$, or $r_{2}^{\prime} \neq 010$, or $z_{1\left(r_{1}\right)}^{\prime} \neq(F, 29)$ or $z_{2\left(r_{2}\right)}^{\prime} \neq(40)$

Example: the Original MAR Assumption

Example: let's say I try to measure Gender, Age, and Income on two individuals

- $r_{1}=110, \quad z_{1}=(F, 29,100 K), \quad r_{2}=010, \quad z_{2}=(M, 40,80 K)$
- Missing data: $\quad z_{1\left(\bar{r}_{1}\right)}=(100 K), \quad z_{2\left(\bar{r}_{2}\right)}=(M, 80 K)$
- In Rubin's original definition, the missing data are MAR if

$$
\begin{gathered}
p\left(R_{1}=110, R_{2}=010 \mid Z_{1}=(F, 29,100 K), Z_{2}=(M, 40,80 K)\right)= \\
p\left(R_{1}=110, R_{2}=010 \mid Z_{1}=(F, 29, a), Z_{2}=(b, 40, c)\right),
\end{gathered}
$$

for any values of a, b, c

- Rubin's original MAR assumption doesn't say anything about
\square
for $r_{1}^{\prime} \neq 110$, or $r_{2}^{\prime} \neq 010$, or $z_{1\left(r_{1}\right)}^{\prime} \neq(F 20)$ or $z_{2\left(r_{2}\right)}^{\prime} \neq(40)$

Example: the Original MAR Assumption

Example: let's say I try to measure Gender, Age, and Income on two individuals

- $r_{1}=110, \quad z_{1}=(F, 29,100 K), \quad r_{2}=010, \quad z_{2}=(M, 40,80 K)$
- Missing data: $\quad z_{1\left(\bar{r}_{1}\right)}=(100 \mathrm{~K}), \quad z_{2\left(\bar{r}_{2}\right)}=(M, 80 \mathrm{~K})$
- In Rubin's original definition, the missing data are MAR if

$$
\begin{gathered}
p\left(R_{1}=110, R_{2}=010 \mid Z_{1}=(F, 29,100 K), Z_{2}=(M, 40,80 K)\right)= \\
p\left(R_{1}=110, R_{2}=010 \mid Z_{1}=(F, 29, a), Z_{2}=(b, 40, c)\right),
\end{gathered}
$$

for any values of a, b, c

- Rubin's original MAR assumption doesn't say anything about

$$
p\left(R_{1}=r_{1}^{\prime}, R_{2}=r_{2}^{\prime} \mid z_{1}^{\prime}, z_{2}^{\prime}\right)
$$

for $r_{1}^{\prime} \neq 110$, or $r_{2}^{\prime} \neq 010$, or $z_{1\left(r_{1}\right)}^{\prime} \neq(F, 29)$ or $z_{2\left(r_{2}\right)}^{\prime} \neq(40)$

The MAR Assumption Today

- Today, most authors interpret the MAR assumption as

$$
p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\bar{r})}, \phi\right)=p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\overline{\mathbf{r}})}^{\prime}, \phi\right)
$$

for all possible values $\mathbf{r}, \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\overline{\mathbf{r}})}, \mathbf{z}_{(\overline{\mathbf{r}})}^{\prime}$ and ϕ

- Equivalently,

$$
p(\mathbf{r} \mid \mathbf{z}, \phi)=p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \phi\right)
$$

for all possible values \mathbf{r}, \mathbf{z}, and ϕ

- Mealli \& Rubin (2015, Biometrika) call this missing always at random - MAAR (see also Seaman et al. (2013, Stat. Sci.))
- However, we don't really use the original definition of MAR; for example, nobody says "I will assume MAR if I obtain \mathbf{r} and $\mathbf{z}_{(\mathbf{r})}$, but not if I obtain \mathbf{r}^{\prime} or $\mathbf{z}_{(\mathrm{r})}^{\prime}$
- Here we'll use the common interpretation of MAR (MAAR). With i.i.d. data, it corresponds to assuming

$$
p(r \mid z, \phi)=p\left(r \mid z_{(r)}, \phi\right)
$$

The MAR Assumption Today

- Today, most authors interpret the MAR assumption as

$$
p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\bar{r})}, \phi\right)=p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\overline{\mathbf{r}})}^{\prime}, \phi\right)
$$

for all possible values $\mathbf{r}, \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\bar{r})}, \mathbf{z}_{(\bar{r})}^{\prime}$ and ϕ

- Equivalently,

$$
p(\mathbf{r} \mid \mathbf{z}, \phi)=p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \phi\right)
$$

for all possible values \mathbf{r}, \mathbf{z}, and ϕ

- Mealli \& Rubin (2015, Biometrika) call this missing always at random - MAAR (see also Seaman et al. (2013, Stat. Sci.))
- However, we don't really use the original definition of MAR; for example, nobody says "I will assume MAR if I obtain \mathbf{r} and $\mathbf{z}_{(\mathbf{r})}$, but not if I obtain \mathbf{r}^{\prime} or $\mathbf{z}_{(\mathbf{r})}^{\prime}{ }^{\prime}$
> Here we'll use the common interpretation of MAR (MAAR). With i.i.d. data, it corresponds to assuming

$$
p(r \mid z, \phi)=p\left(r \mid z_{(r)}, \phi\right)
$$

The MAR Assumption Today

- Today, most authors interpret the MAR assumption as

$$
p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\overline{\mathbf{r}})}, \phi\right)=p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\overline{\mathbf{r}})}^{\prime}, \phi\right)
$$

for all possible values $\mathbf{r}, \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\overline{\mathbf{r}})}, \mathbf{z}_{(\overline{\mathbf{r}})}^{\prime}$ and ϕ

- Equivalently,

$$
p(\mathbf{r} \mid \mathbf{z}, \phi)=p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \phi\right)
$$

for all possible values \mathbf{r}, \mathbf{z}, and ϕ

- Mealli \& Rubin (2015, Biometrika) call this missing always at random - MAAR (see also Seaman et al. (2013, Stat. Sci.))
- However, we don't really use the original definition of MAR; for example, nobody says "I will assume MAR if I obtain \mathbf{r} and $\mathbf{z}_{(\mathbf{r})}$, but not if I obtain \mathbf{r}^{\prime} or $\mathbf{z}_{(\mathbf{r})}^{\prime}{ }^{\prime \prime}$
- Here we'll use the common interpretation of MAR (MAAR). With i.i.d. data, it corresponds to assuming

The MAR Assumption Today

- Today, most authors interpret the MAR assumption as

$$
p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\bar{r})}, \phi\right)=p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\overline{\mathbf{r}})}^{\prime}, \phi\right)
$$

for all possible values $\mathbf{r}, \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\overline{\mathbf{r}})}, \mathbf{z}_{(\overline{\mathbf{r}})}^{\prime}$ and ϕ

- Equivalently,

$$
p(\mathbf{r} \mid \mathbf{z}, \phi)=p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \phi\right)
$$

for all possible values \mathbf{r}, \mathbf{z}, and ϕ

- Mealli \& Rubin (2015, Biometrika) call this missing always at random - MAAR (see also Seaman et al. (2013, Stat. Sci.))
- However, we don't really use the original definition of MAR; for example, nobody says "I will assume $M A R$ if I obtain \mathbf{r} and $\mathbf{z}_{(\mathbf{r})}$, but not if I obtain \mathbf{r}^{\prime} or $\mathbf{z}_{(\mathbf{r})}^{\prime}$ "
- Here we'll use the common interpretation of MAR (MAAR). With i.i.d. data, it corresponds to assuming

The MAR Assumption Today

- Today, most authors interpret the MAR assumption as

$$
p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\bar{r})}, \phi\right)=p\left(\mathbf{r} \mid \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\overline{\mathbf{r}})}^{\prime}, \phi\right)
$$

for all possible values $\mathbf{r}, \mathbf{z}_{(\mathbf{r})}, \mathbf{z}_{(\overline{\mathbf{r}})}, \mathbf{z}_{(\overline{\mathbf{r}})}^{\prime}$ and ϕ

- Equivalently,

$$
p(\mathbf{r} \mid \mathbf{z}, \phi)=p\left(\mathbf{r} \mid \mathbf{z}_{(r)}, \phi\right)
$$

for all possible values \mathbf{r}, \mathbf{z}, and ϕ

- Mealli \& Rubin (2015, Biometrika) call this missing always at random - MAAR (see also Seaman et al. (2013, Stat. Sci.))
- However, we don't really use the original definition of MAR; for example, nobody says "I will assume MAR if I obtain \mathbf{r} and $\mathbf{z}_{(\mathbf{r})}$, but not if I obtain \mathbf{r}^{\prime} or $\mathbf{z}_{(\mathbf{r})}^{\prime}$ "
- Here we'll use the common interpretation of MAR (MAAR). With i.i.d. data, it corresponds to assuming

$$
p(r \mid z, \phi)=p\left(r \mid z_{(r)}, \phi\right)
$$

for a generic observation, for all possible values r, z, and ϕ

Outline

Review of Maximum Likelihood Estimation

Likelihood-Based Set-Up with Missing Data

Rubin's Original MAR Assumption

Summary

Summary

Main take-aways from today's lecture:

- In general, likelihood-based inference requires positing a model for the study variables and for the response mechanism
- Under ignorability (MAR + separability), we don't need to explicitly write the response mechanism
- Original MAR definition has mutated over the years

Next lecture:

= The EM algorithm!

Summary

Main take-aways from today's lecture:

- In general, likelihood-based inference requires positing a model for the study variables and for the response mechanism
- Under ignorability (MAR + separability), we don't need to explicitly write the response mechanism
- Original MAR definition has mutated over the years

Next lecture:

- The EM algorithm!

