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Previous Lectures

Näıve/ad-hoc approaches to handling missing data:

I Complete-case analyses are wasteful and potentially invalid unless
MCAR holds

I Imputation methods might be valid for some quantities under
MCAR, but:

I Variances are underestimated =⇒ overconfidence in your results!
I Invalid results for other quantities, induced biases are not clear!

I R session 1:
I Simulation study showed mean imputation leads to:

I Invalid inferences on regression coefficients
I Underestimation of variances

I R package VIM implements variants of hot-deck imputation
I Open question: performance of bootstrap + imputation?
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Today’s Lecture

Likelihood-based approaches

I General set-up for maximum likelihood estimation

I How did Rubin come up with the MAR assumption?

I The concept of ignorability

Reading: pages 50 – 61, Ch. 3, of Davidian and Tsiatis

3 / 34



Outline

Review of Maximum Likelihood Estimation

Likelihood-Based Set-Up with Missing Data

Rubin’s Original MAR Assumption

Summary
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Parametric Models

I Z = (Z1, . . . ,ZK ): generic vector of study variables

I Thus far we have written p(z) to represent the probability density
function of the distribution of Z

I We now work under a parametric model for the distribution of Z

{p(z | θ)}θ,

with θ = (θ1, θ2, . . . , θd)

I Model written as {p(z ; θ)}θ in Davidian and Tsiatis (philosophical
difference)
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Example of Parametric Model: Bivariate Normal

Suppose that Y = (Y1,Y2)T is bivariate normal

Y ∼ N (µ,Σ) , µ = (µ1, µ2)T , Σ =

(
σ2

1 σ12

σ12 σ2
2

)
.

The probability density of Y is

p(y | θ) =
1

2π|Σ|1/2
exp{−(y − µ)TΣ−1(y − µ)/2},

where θ = (µ1, σ
2
1 , µ2, σ

2
2 , σ12)T .
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Our Typical, Idealized Sampling Process

I In practice, we have data zi , for each i = 1, . . . , n

I We imagine that zi = (zi1, . . . , ziK ) is a realization of a random
vector Zi = (Zi1, . . . ,ZiK )

I All random vectors {Zi}ni=1 follow the same distribution and are
independent of each other – independent and identically distributed
(i.i.d. or IID)

I Under our parametric model, the joint distribution of {Zi}ni=1 has a
density function

n∏
i=1

p(zi | θ)
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Maximum Likelihood Estimation
I The likelihood function is defined as

L(θ) =
n∏

i=1

p(zi | θ),

seen as a function of θ

I The maximum likelihood estimator (MLE) is the value θ̂ that
maximizes L(θ)

θ̂ = arg max
θ

L(θ) = arg max
θ

log L(θ)

I We take the log because it is usually easier to work with

log L(θ) =
n∑

i=1

log p(zi | θ)

and it leads to the same maximizer
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Finding the MLE

I Under some regularity conditions, the MLE is the solution to the
score equations

n∑
i=1

Sθ(zi ; θ) =
n∑

i=1

∂

∂θ
log p(zi | θ) = 0

I Where the score vector

Sθ(z ; θ) =
∂

∂θ
log p(z | θ) =


∂
∂θ1

log p(z | θ)
∂
∂θ2

log p(z | θ)
...

∂
∂θd

log p(z | θ)


I Solving the score equations might require iterative methods, such as

Newton–Raphson
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Why MLEs?

Under regularity conditions, including that the model is correctly
specified, i.e., there really exists θ0 such that p(z | θ0) is the true density:

I The MLE is a consistent estimator: θ̂
p−→ θ0

I We know the MLE’s asymptotic distribution:

√
n(θ̂ − θ0)

L−→ N (0, I(θ0)−1),

where I(θ) is Fisher’s information matrix

I(θ) = −E
[

∂2

∂θ∂θT
log p(Z | θ)

]
= E

[
Sθ(Z ; θ)Sθ(Z ; θ)T

]
I I(θ0) is unknown, but I(θ̂)

p−→ I(θ0)

I Heuristically, we say

θ̂ ≈ N (θ0, I(θ̂)−1/n)
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Why MLEs?
I Sometimes, computing I(θ) can be complicated, so we might

instead use the observed information matrix

J(θ) = −
n∑

i=1

∂2

∂θ∂θT
log p(zi | θ)

I We have that n−1J(θ̂)
p−→ I(θ0)

I Therefore, we heuristically say

θ̂ ≈ N (θ0, J(θ̂)−1)

I This can be used for approximating standard errors for the
components of θ and to compute approximately valid confidence
intervals

I What if we have missing data? Our observed data are realizations of
(Z(R),R), not realizations of Z !
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Factorizations of the Full-Data Distribution
Full-data distribution: joint distribution of (Z ,R), with density

p(z , r)

Not accessible to us, mere humans, even with infinite samples, but we
know it can be factorized in different ways

I Selection model factorization:

p(z , r) = p(r | z)p(z)

I p(z) can come from the parametric model we would use if we had
complete data, say p(z | θ)

I p(r | z) can come from a model for the response mechanism,
p(r | z , ψ)

I Other factorizations are important and lead to alternative
approaches for handling missing data, but they will be covered later
in the course
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Parametric Models

I Consider a parametric family for the marginal distribution of Z

{p(z | θ)}θ,

and for the response mechanism

{p(r | z , ψ)}ψ

I We assume separability of θ and ψ: knowledge on the value of θ
says nothing about the value of ψ, and vice versa

I All combinations of values of θ and ψ are possible

I The range of values of θ is the same regardless of ψ, and vice versa
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Full-Data Sample

In the full-data world:

I Study variables for individual i : Zi = (Zi1, . . . ,ZiK )

I Response indicators for individual i : Ri = (Ri1, . . . ,RiK )

I {(Zi ,Ri )}ni=1 are independent and identically distributed

I The realized values are {(zi , ri )}ni=1

I This leads to a full-data likelihood function

Lfull(θ, ψ) =
n∏

i=1

p(ri | zi , ψ)p(zi | θ)

Clearly, we cannot work with Lfull(θ, ψ), as it depends on missing data!
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The Observed-Data Distribution

As mentioned in Lecture 2, given that R is random, the observed data
are obtained as realizations of

(Z(R),R)

We can think of the generative process

Z =⇒ R =⇒ (Z(R),R)

The distribution of (Z(R),R) is referred to as the observed-data
distribution, and it has a probability density denoted by

p(z(r), r)
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The Observed-Data Distribution

To derive p(z(r), r), we need to integrate p(z , r) over the possible missing
values z(r̄), denoted Z(r̄)

p(z(r), r) =

∫
Z(r̄)

p(z , r) µ(dz(r̄))

=

∫
Z(r̄)

p(r | z)p(z) µ(dz(r̄))

=

{∫
Z(r̄)

p(r | z , ψ)p(z | θ)dz(r̄) if Z is continuous∑
Z(r̄)

p(r | z , ψ)p(z | θ) if Z is discrete

From now on, we’ll write
∫
Z(r̄)

p(z , r)dz(r̄) instead of
∫
Z(r̄)

p(z , r)µ(dz(r̄))
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Example of Observed-Data Distribution

HW2: problem 6 of HW1 continued: say K = 2, Z1 ∈ {1, 2},
Z2 ∈ {A,B}, R ∈ {0, 1}2.

I Write down all the elements of the sample space of (Z(R),R)

I Say the full-data probability density is given by

p(z , r) ≡ p(z1, z2, r1, r2) ≡ πz1,z2,r1,r2

Derive p(z(r), r) for all elements (z(r), r) in the sample space of
(Z(R),R)
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Example of Observed-Data Distribution

HW2: say K = 2, (Z1,Z2)T ∼ N (µ,Σ), R ∈ {0, 1}2.

I Describe the sample space of (Z(R),R) (problem 7 of HW1)

I Say p(r | z) = p(r). Derive p(z(r), r) for all r ∈ {0, 1}2

I Say R1 ⊥⊥ R2 | Z ,

logit p(Rj = 1 | z) = βj0 + βj1z1 + βj2z2, j = 1, 2.

Derive p(z(r), r) for all r ∈ {0, 1}2
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Likelihood-Based Set-Up
I The random sample we are actually working with is

{(Zi(Ri ),Ri )}ni=1

I The realized values are actually

{(zi(ri ), ri )}
n
i=1

I As before, we can think of the generative process, for each i :

Zi =⇒ Ri =⇒ (Zi(Ri ),Ri )

I What is the observed-data likelihood function?

I We need to integrate the full-data likelihood Lfull(θ, ψ) over the
possible values of each zi(r̄i )

20 / 34
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Likelihood-Based Set-Up
I Since we are assuming i.i.d. data, let’s focus on a generic term of

the full-data likelihood

`full(θ, ψ) = p(r | z , ψ)p(z | θ)

to facilitate the notation

I We cannot work with `full(θ, ψ) since we don’t observe a complete
realization z , but rather z(r)

I We need to integrate over the missing data to derive the
observed-data likelihood

`obs(θ, ψ) =

∫
Z(r̄)

p(r | z , ψ)p(z | θ) dz(r̄)

I `obs(θ, ψ) does not depend on missing data

I To obtain likelihood-based inferences on θ, it seems we need to pass
through the specification of p(r | z , ψ)

I Typically, p(r | z , ψ) is not of scientific interest so it can be seen as
a nuisance
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Developing the Missing at Random (MAR) Assumption

Rubin’s (1976, Biometrika) fundamental motivation:

I How can we get rid of this nuisance p(r | z , ψ)?

I When are inferences for θ based on
∫
Z(r̄)

p(z | θ) dz(r̄) valid?

Stare at the observed-data likelihood:

`obs(θ, ψ) =

∫
Z(r̄)

p(r | z , ψ)p(z | θ) dz(r̄)
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The Missing at Random (MAR) Assumption

The MAR assumption, in terms of p(r | z , ψ) says

p(r | z , ψ) = p(r | z(r), ψ)

(we’ll soon talk about the formal definition)
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Ignorability Under MAR
I Under the MAR assumption:

`obs(θ, ψ) =

∫
Z(r̄)

p(r | z , ψ)p(z | θ) dz(r̄)

MAR
=

∫
Z(r̄)

p(r | z(r), ψ)p(z | θ) dz(r̄)

= p(r | z(r), ψ)

∫
Z(r̄)

p(z | θ) dz(r̄)

= p(r | z(r), ψ) p(z(r) | θ)

I Under MAR, likelihood-based inference can be based on

`obs(θ) = p(z(r) | θ) =

∫
Z(r̄)

p(z | θ) dz(r̄)

I Missingness mechanism is ignorable since there’s no need to specify
p(r | z , ψ) if we only care about θ
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Ignorability

From Little & Rubin (2002, Definition 6.4):

The missing-data mechanism is ignorable for likelihood inference if:

(a) MAR holds

(b) The parameters θ and ψ are separable
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Maximum-Likelihood Estimation

The MLE for θ is obtained from maximizing

Lobs(θ, ψ) =
n∏

i=1

∫
Z(r̄i )

p(ri | zi , ψ)p(zi | θ) dzi(r̄i )

MAR
=

[
n∏

i=1

p(ri | zi(ri ), ψ)

]
︸ ︷︷ ︸

Can be ignored

[
n∏

i=1

∫
Z(r̄i )

p(zi | θ) dzi(r̄i )

]
︸ ︷︷ ︸

Provides MLE of θ under MAR

I It might be difficult to work with these expressions, even under
MAR; the EM algorithm might help! (next class)

I Note that the MLE is the same whether we assume MAR, MCAR, or
anything that satisfies ignorability!
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Observed-Data Score Vector and Fisher Information
I Davidian and Tsiatis, in pages 60–61, present expressions equivalent

to the following
I The score vector

Sθ(r , z(r); θ) =
∂

∂θ
log p(z(r) | θ)

I The Fisher’s information matrix

I(θ) = −E
[

∂2

∂θ∂θT
log p(Z(R) | θ)

]
I The observed-information matrix

J(θ) = −
n∑

i=1

∂2

∂θ∂θT
log p(zi(ri ) | θ)

I Davidian and Tsiatis provide alternative expressions for these
quantities that require some algebraic manipulations (check on your
own)

I Note that while we can ignore p(r | z(r), ψ) to compute the MLE,
the expectation to obtain I(θ) is over (R,Z(R))

I If response mechanism is not ignorable, these quantities need to be
derived from Lobs(θ, ψ)!
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Discussion on What the MAR Assumption Says

I Rubin (1976, Biometrika) introduced a slightly different the idea of
MAR

I People use and understand something else – the difference is subtle

I Does it matter?
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The Original MAR Assumption

Rubin (1976, Biometrika):

I r: response indicators for your entire dataset, realized, fixed

I z(r): observed values for entire dataset, realized, fixed

I Rubin’s original definition says:

Missing data z(̄r) are MAR if

p(r | z(r), z(̄r), φ) = p(r | z(r), z
′
(̄r), φ)

for all possible values z(̄r), z
′
(̄r) and φ

I This doesn’t say anything about other r′ 6= r or other z′(r) 6= z(r)

I It’s an assumption on the probability of observing what I observed,
not about what I could have observed
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Example: the Original MAR Assumption

Example: let’s say I try to measure Gender, Age, and Income on two
individuals

I r1 = 110, z1 = (F , 29, 100K ), r2 = 010, z2 = (M, 40, 80K )

I Missing data: z1(r̄1) = (100K ), z2(r̄2) = (M, 80K )

I In Rubin’s original definition, the missing data are MAR if

p (R1 = 110,R2 = 010 | Z1 = (F , 29, 100K ),Z2 = (M, 40, 80K )) =

p (R1 = 110,R2 = 010 | Z1 = (F , 29, a),Z2 = (b, 40, c)) ,

for any values of a, b, c

I Rubin’s original MAR assumption doesn’t say anything about

p(R1 = r ′1,R2 = r ′2 | z ′1, z ′2)

for r ′1 6= 110, or r ′2 6= 010, or z ′1(r1) 6= (F , 29) or z ′2(r2) 6= (40)

31 / 34



Example: the Original MAR Assumption

Example: let’s say I try to measure Gender, Age, and Income on two
individuals

I r1 = 110, z1 = (F , 29, 100K ), r2 = 010, z2 = (M, 40, 80K )

I Missing data: z1(r̄1) = (100K ), z2(r̄2) = (M, 80K )

I In Rubin’s original definition, the missing data are MAR if

p (R1 = 110,R2 = 010 | Z1 = (F , 29, 100K ),Z2 = (M, 40, 80K )) =

p (R1 = 110,R2 = 010 | Z1 = (F , 29, a),Z2 = (b, 40, c)) ,

for any values of a, b, c

I Rubin’s original MAR assumption doesn’t say anything about

p(R1 = r ′1,R2 = r ′2 | z ′1, z ′2)

for r ′1 6= 110, or r ′2 6= 010, or z ′1(r1) 6= (F , 29) or z ′2(r2) 6= (40)

31 / 34



Example: the Original MAR Assumption

Example: let’s say I try to measure Gender, Age, and Income on two
individuals

I r1 = 110, z1 = (F , 29, 100K ), r2 = 010, z2 = (M, 40, 80K )

I Missing data: z1(r̄1) = (100K ), z2(r̄2) = (M, 80K )

I In Rubin’s original definition, the missing data are MAR if

p (R1 = 110,R2 = 010 | Z1 = (F , 29, 100K ),Z2 = (M, 40, 80K )) =

p (R1 = 110,R2 = 010 | Z1 = (F , 29, a),Z2 = (b, 40, c)) ,

for any values of a, b, c

I Rubin’s original MAR assumption doesn’t say anything about

p(R1 = r ′1,R2 = r ′2 | z ′1, z ′2)

for r ′1 6= 110, or r ′2 6= 010, or z ′1(r1) 6= (F , 29) or z ′2(r2) 6= (40)

31 / 34



Example: the Original MAR Assumption

Example: let’s say I try to measure Gender, Age, and Income on two
individuals

I r1 = 110, z1 = (F , 29, 100K ), r2 = 010, z2 = (M, 40, 80K )

I Missing data: z1(r̄1) = (100K ), z2(r̄2) = (M, 80K )

I In Rubin’s original definition, the missing data are MAR if

p (R1 = 110,R2 = 010 | Z1 = (F , 29, 100K ),Z2 = (M, 40, 80K )) =

p (R1 = 110,R2 = 010 | Z1 = (F , 29, a),Z2 = (b, 40, c)) ,

for any values of a, b, c

I Rubin’s original MAR assumption doesn’t say anything about

p(R1 = r ′1,R2 = r ′2 | z ′1, z ′2)

for r ′1 6= 110, or r ′2 6= 010, or z ′1(r1) 6= (F , 29) or z ′2(r2) 6= (40)

31 / 34



Example: the Original MAR Assumption

Example: let’s say I try to measure Gender, Age, and Income on two
individuals

I r1 = 110, z1 = (F , 29, 100K ), r2 = 010, z2 = (M, 40, 80K )

I Missing data: z1(r̄1) = (100K ), z2(r̄2) = (M, 80K )

I In Rubin’s original definition, the missing data are MAR if

p (R1 = 110,R2 = 010 | Z1 = (F , 29, 100K ),Z2 = (M, 40, 80K )) =

p (R1 = 110,R2 = 010 | Z1 = (F , 29, a),Z2 = (b, 40, c)) ,

for any values of a, b, c

I Rubin’s original MAR assumption doesn’t say anything about

p(R1 = r ′1,R2 = r ′2 | z ′1, z ′2)

for r ′1 6= 110, or r ′2 6= 010, or z ′1(r1) 6= (F , 29) or z ′2(r2) 6= (40)

31 / 34



The MAR Assumption Today
I Today, most authors interpret the MAR assumption as

p(r | z(r), z(̄r), φ) = p(r | z(r), z
′
(̄r), φ)

for all possible values r, z(r), z(̄r), z
′
(̄r) and φ

I Equivalently,
p(r | z, φ) = p(r | z(r), φ)

for all possible values r, z, and φ

I Mealli & Rubin (2015, Biometrika) call this missing always at
random – MAAR (see also Seaman et al. (2013, Stat. Sci.))

I However, we don’t really use the original definition of MAR; for
example, nobody says “I will assume MAR if I obtain r and z(r), but
not if I obtain r′ or z′(r)”

I Here we’ll use the common interpretation of MAR (MAAR). With
i.i.d. data, it corresponds to assuming

p(r | z , φ) = p(r | z(r), φ),

for a generic observation, for all possible values r , z , and φ
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not if I obtain r′ or z′(r)”

I Here we’ll use the common interpretation of MAR (MAAR). With
i.i.d. data, it corresponds to assuming

p(r | z , φ) = p(r | z(r), φ),

for a generic observation, for all possible values r , z , and φ
32 / 34



The MAR Assumption Today
I Today, most authors interpret the MAR assumption as

p(r | z(r), z(̄r), φ) = p(r | z(r), z
′
(̄r), φ)

for all possible values r, z(r), z(̄r), z
′
(̄r) and φ

I Equivalently,
p(r | z, φ) = p(r | z(r), φ)

for all possible values r, z, and φ

I Mealli & Rubin (2015, Biometrika) call this missing always at
random – MAAR (see also Seaman et al. (2013, Stat. Sci.))

I However, we don’t really use the original definition of MAR; for
example, nobody says “I will assume MAR if I obtain r and z(r), but
not if I obtain r′ or z′(r)”

I Here we’ll use the common interpretation of MAR (MAAR). With
i.i.d. data, it corresponds to assuming

p(r | z , φ) = p(r | z(r), φ),

for a generic observation, for all possible values r , z , and φ
32 / 34



The MAR Assumption Today
I Today, most authors interpret the MAR assumption as

p(r | z(r), z(̄r), φ) = p(r | z(r), z
′
(̄r), φ)

for all possible values r, z(r), z(̄r), z
′
(̄r) and φ

I Equivalently,
p(r | z, φ) = p(r | z(r), φ)

for all possible values r, z, and φ

I Mealli & Rubin (2015, Biometrika) call this missing always at
random – MAAR (see also Seaman et al. (2013, Stat. Sci.))

I However, we don’t really use the original definition of MAR; for
example, nobody says “I will assume MAR if I obtain r and z(r), but
not if I obtain r′ or z′(r)”

I Here we’ll use the common interpretation of MAR (MAAR). With
i.i.d. data, it corresponds to assuming

p(r | z , φ) = p(r | z(r), φ),

for a generic observation, for all possible values r , z , and φ
32 / 34



Outline

Review of Maximum Likelihood Estimation

Likelihood-Based Set-Up with Missing Data

Rubin’s Original MAR Assumption

Summary

33 / 34



Summary

Main take-aways from today’s lecture:

I In general, likelihood-based inference requires positing a model for
the study variables and for the response mechanism

I Under ignorability (MAR + separability), we don’t need to explicitly
write the response mechanism

I Original MAR definition has mutated over the years

Next lecture:

I The EM algorithm!
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