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Introduction

(X ,Y ): random variable, y is subject to missingness

Response indicator function

δi =

{
1 if yi is observed
0 otherwise.

Nonignorable nonresponse

f (y | x) 6= f (y | x, δ = 1).

In general,

f (y | x, δ = 1) =
P(δ = 1 | x, y)

P(δ = 1 | x)
f (y | x).

Thus, P(δ = 1 | x, y) 6= P(δ = 1 | x) implies nonignorable
nonresponse.
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Observed likelihood

f (y | x; θ): model of y on x

g(δ | x, y ;φ): model of δ on (x, y)

Observed likelihood

Lobs(θ, φ) =
∏
δi=1

f (yi | xi ; θ) g (δi | xi , yi ;φ)

×
∏
δi=0

∫
f (yi | xi ; θ) g (δi | xi , yi ;φ) dyi

Under what conditions are the parameters identifiable (or estimable)?
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Definition

Identifiability

Let P = {Pθ; θ ∈ Θ} be a statistical model with parameter space in Θ.
We say that P is identifiable if the mapping θ → Pθ is one-to-one:

Pθ1 = Pθ2 implies θ1 = θ2 for all θ1, θ2 ∈ Θ.

That is, if F (z; θ) is the distribution function from Pθ then for any θ1 and
θ2 in Θ such that θ1 6= θ2, it implies

F (z; θ1) 6= F (z, θ2)

for some z.

Remark
Identifiability is a concept closely related to the ability to estimate the
parameters of a model from a sample generated by the model.
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Example 1

Measurement error models

Yi = β0 + β1xi + ei

Xi = xi + ui

where (xi , ei , ui )
′ ∼ N[(µx , 0, 0), diag(σxx , σee , σuu)]. We observe (Xi ,Yi )

from the sample. In this case, we have(
Xi

Yi

)
∼ N

[(
µx

β0 + β1µx

)
,

(
σxx + σuu β1σxx
β1σxx σee + β21σxx

)]
.

The joint distribution is completely determined by five sufficient statistics
and is a function of six parameters. Thus, the distribution is not identified.
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Example 2

x , y : dichotomous (taking 0 or 1).

x is always observed and y is subject to missingness

Response model

P(δ = 1 | x , y) =
exp(φ0 + φ1x + φ2y + φ3xy)

1 + exp(φ0 + φ1x + φ2y + φ3xy)

The model is not identified because the number of sufficient statistics
is smaller than the number of parameters.

If the response mechanism satisfies P(δ = 1 | x , y) = P(δ = 1 | y),
then the model is identified.
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Example 3

x , z , y : dichotomous (taking 0 or 1).

(x , z) is always observed and y is subject to missingness

If the response mechanism satisfies
P(δ = 1 | x , z , y) = P(δ = 1 | x , y), then the model is identified.
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Lemma (Wang et al., 2014)

Suppose that we can decompose the covariate vector x = (u, z) such that

g(δ|y , x) = g(δ|y ,u) (1)

and, for any given u, there exist zu,1 and zu,2 such that

f (y |u, z = zu,1) 6= f (y |u, z = zu,2). (2)

Under some other minor conditions, all the parameters in f and g are
identifiable.
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Remark

Condition (1) means
δ ⊥ z | y ,u.

That is, given (y ,u), z does not help in explaining δ.

Figure: A DAG for understanding nonresponse instrumental variable Z

Z U

Y δ

We may call z the nonresponse instrument variable.
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§1. Full likelihood-based ML estimation
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Full likelihood-based ML estimation

Wish to find η̂ = (θ̂, φ̂), that maximizes the observed likelihood

Lobs(η) =
∏
δi=1

f (yi | xi ; θ) g (δi | xi , yi ;φ)

×
∏
δi=0

∫
f (yi | xi ; θ) g (δi | xi , yi ;φ) dyi

Mean score theorem: Under some regularity conditions, finding the
MLE by maximizing the observed likelihood is equivalent to finding
the solution to

S̄(η) ≡ E{S(η) | yobs , δ; η} = 0,

where yobs is the observed data. The conditional expectation of the
score function is called mean score function.
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EM algorithm

Interested in finding η̂ that maximizes Lobs(η). The MLE can be
obtained by solving Sobs(η) = 0, which is equivalent to solving
S̄(η) = 0 by the mean score theorem.

EM algorithm provides an alternative method of solving S̄(η) = 0 by
writing

S̄(η) = E {S(η) | yobs , δ; η}

and using the following iterative method:

η̂(t+1) ← solve E
{
S(η) | yobs , δ; η̂(t)

}
= 0.
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EM algorithm

Definition

Let η(t) be the current value of the parameter estimate of η. The EM
algorithm can be defined as iteratively carrying out the following E-step
and M-steps:

E-step: Compute

Q
(
η | η(t)

)
= E

{
ln f (y, δ; η) | yobs, δ, η(t)

}
M-step: Find η(t+1) that maximizes Q(η | η(t)) w.r.t. η.
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Monte Carlo EM

Motivation: Monte Carlo samples in the EM algorithm can be used as
imputed values.

Monte Carlo EM
1 In the EM algorithm defined by

[E-step] Compute

Q
(
η | η(t)

)
= E

{
ln f (y, δ; η) | yobs, δ; η(t)

}
[M-step] Find η(t+1) that maximizes Q

(
η | η(t)

)
,

E-step is computationally cumbersome because it involves integral.

2 Wei and Tanner (1990): In the E-step, first draw

y
∗(1)
mis , · · · , y

∗(m)
mis ∼ f

(
ymis | yobs, δ; η(t)

)
and approximate

Q
(
η | η(t)

)
∼=

1

m

m∑
j=1

ln f
(
yobs , y

∗(j)
mis , δ; η

)
.
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Remark

Identifiability condition is needed to guarantee the convergence of EM
sequence.

The fully parametric model approach is known to be sensitive to the
failure of model assumptions: Little (1985), Kenward and
Molenberghs (1988)

Sensitivity analysis is often recommended: Scharfstein et al. (1999)
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§2. Partial Likelihood approach
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Partial Likelihood approach

A classical likelihood-based approach for parameter estimation under
non ignorable nonresponse is to maximize Lobs(θ, φ) with respect to
(θ, φ), where

Lobs(θ, φ) =
∏
δi=1

f (yi | xi ; θ) g (δi | xi , yi ;φ)

×
∏
δi=0

∫
f (yi | xi ; θ) g (δi | xi , yi ;φ) dyi

Such approach can be called full likelihood-based approach because it
uses full information available in the observed data.

On the other hand, partial likelihood-based approach (or conditional
likelihood approach) uses a subset of the sample.
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Conditional Likelihood approach

Idea

Since
f (y | x)g(δ | x, y) = f1(y | x, δ)g1(δ | x),

for some f1 and g1, we can write

Lobs(θ) =
∏
δi=1

f1 (yi | xi , δi = 1) g1 (δi | xi )

×
∏
δi=0

∫
f1 (yi | xi , δi = 0) g1 (δi | xi ) dyi

=
∏
δi=1

f1 (yi | xi , δi = 1)×
n∏

i=1

g1 (δi | xi ) .

The conditional likelihood is defined to be the first component:

Lc(θ) =
∏
δi=1

f1 (yi | xi , δi = 1) =
∏
δi=1

f (yi | xi ; θ)π(xi , yi )∫
f (y | xi ; θ)π(xi , y)dy

,

where π(x, yi ) = Pr(δi = 1 | xi , yi ).
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Conditional Likelihood approach

Example

Assume that the original sample is a random sample from an
exponential distribution with mean µ = 1/θ. That is, the probability
density function of y is f (y ; θ) = θ exp(−θy)I (y > 0).

Suppose that we observe yi only when yi > K for a known K > 0.

Thus, the response indicator function is defined by δi = 1 if yi > K
and δi = 0 otherwise.
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Conditional Likelihood approach

Example

To compute the maximum likelihood estimator from the observed
likelihood, note that

Sobs(θ) =
∑
δi=1

(
1

θ
− yi

)
+
∑
δi=0

{
1

θ
− E (yi | δi = 0)

}
.

Since

E (Y | y > K ) =
1

θ
− K exp(−θK )

1− exp(−θK )
,

the maximum likelihood estimator of θ can be obtained by the
following iteration equation:{

θ̂(t+1)
}−1

= ȳr −
n − r

r

{
K exp(−K θ̂(t))

1− exp(−K θ̂(t))

}
, (3)

where r =
∑n

i=1 δi and ȳr = r−1
∑n

i=1 δiyi .
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Conditional Likelihood approach

Example

Since πi = Pr(δi = 1 | yi ) = I (yi > K ) and
E (πi ) = E{I (yi > K )} = exp(−Kθ), the conditional likelihood
reduces to ∏

δi=1

θ exp{−θ(yi − K )}.

The maximum conditional likelihood estimator of θ is

θ̂c =
1

ȳr − K
.

Since E (y | y > K ) = µ+ K , the maximum conditional likelihood
estimator of µ, which is µ̂c = 1/θ̂c , is unbiased for µ.
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Conditional Likelihood approach

Remark

Under some regularity conditions, the solution θ̂c that maximizes
Lc(θ) satisfies

I1/2c (θ̂c − θ)
L−→ N(0, I )

where

Ic(θ) = −E
{
∂

∂θ′
Sc(θ) | xi ; θ

}
Sc(θ) = ∂ ln Lc(θ)/∂θ, and Si (θ) = ∂ ln f (yi | xi ; θ) /∂θ.

Works only when π(x , y) is a known function.

Does not require nonresponse instrumental variable assumption.

Popular for biased sampling problem.
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Pseudo Likelihood approach

Idea

Consider bivariate (xi , yi ) with density f (y | x ; θ)h(x) where yi are
subject to missingness.

We are interested in estimating θ.

Suppose that Pr(δ = 1 | x , y) depends only on y . (i.e. x is
nonresponse instrument)

Note that f (x | y , δ) = f (x | y).

Thus, we can consider the following conditional likelihood

Lc(θ) =
∏
δi=1

f (xi | yi , δi = 1) =
∏
δi=1

f (xi | yi ).

We can consider maximizing the pseudo likelihood

Lp(θ) =
∏
δi=1

f (yi | xi ; θ)ĥ(xi )∫
f (yi | x ; θ)ĥ(x)dx

,

where ĥ(x) is a consistent estimator of the marginal density of x .
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Pseudo Likelihood approach

Idea

We may use the empirical density in ĥ(x). That is, ĥ(x) = 1/n if
x = xi . In this case,

Lc(θ) =
∏
δi=1

f (yi | xi ; θ)∑n
k=1 f (yi | xk ; θ)

.

We can extend the idea to the case of x = (u, z) where z is a
nonresponse instrument. In this case, the conditional likelihood
becomes ∏

i :δi=1

p(zi | yi ,ui ) =
∏

i :δi=1

f (yi | ui , zi ; θ)p(zi |ui )∫
f (yi | ui , z; θ)p(z|ui )dz

. (4)
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Pseudo Likelihood approach

Let p̂(z|u) be an estimated conditional probability density of z given
u. Substituting this estimate into the likelihood in (4), we obtain the
following pseudo likelihood:∏

i :δi=1

f (yi | ui , zi ; θ)p̂(zi |ui )∫
f (yi | ui , z; θ)p̂(z|ui )dz

. (5)

The pseudo maximum likelihood estimator (PMLE) of θ, denoted by
θ̂p, can be obtained by solving

Sp(θ; α̂) ≡
∑
δi=1

[S(θ; xi , yi )− E{S(θ;ui , z, yi ) | yi ,ui ; θ, α̂}] = 0

for θ, where S(θ; x, y) = S(θ;u, z, y) = ∂ log f (y | x; θ)/∂θ and

E{S(θ;ui , z, yi ) | yi ,ui ; θ, α̂} =

∫
S(θ;ui , z, yi )f (yi | ui , z; θ)p(z | ui ; α̂)dz∫

f (yi | ui , z; θ)p(z | ui ; α̂)dz
.
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Pseudo Likelihood approach

The Fisher-scoring method for obtaining the PMLE is given by

θ̂
(t+1)
p = θ̂

(t)
p +

{
Ip
(
θ̂(t), α̂

)}−1
Sp(θ̂(t), α̂)

where

Ip (θ, α̂) =
∑
δi=1

[
E{S(θ;ui , z, yi )

⊗2 | yi ,ui ; θ, α̂} − E{S(θ;ui , z, yi ) | yi ,ui ; θ, α̂}⊗2
]
.

First considered by Tang et al. (2003) and further developed by Zhao
and Shao (2015).
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§3. GMM approach

Ch 6 P1 27 / 52



Basic setup

(X ,Y ): random variable

θ: Defined by solving

E{U(θ;X ,Y )} = 0.

yi is subject to missingness

δi =

{
1 if yi responds
0 if yi is missing.

Want to find wi such that the solution θ̂w to

n∑
i=1

δiwiU(θ; xi , yi ) = 0

is consistent for θ.
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Basic Setup

Result 1: The choice of

wi =
1

E (δi | xi , yi )
(6)

makes the resulting estimator θ̂w consistent.

Result 2: If δi ∼ Bernoulli(πi ), then using wi = 1/πi also makes the
resulting estimator consistent, but it is less efficient than θ̂w using wi

in (6).
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Parameter estimation : GMM method

Because z is a nonresponse instrumental variable, we may assume

P(δ = 1 | x, y) = π(φ0 + φ1u + φ2y)

for some (φ0, φ1, φ2).

Kott and Chang (2008) idea: Construct a set of estimating equations
such as

n∑
i=1

{
δi

π(φ0 + φ1ui + φ2yi )
− 1

}
(1,ui , zi ) = 0

that are unbiased to zero.

May have overidentified situation: Use the generalized method of
moments (GMM).
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GMM method

Example 2

Suppose that we are interested in estimating the parameters in the
regression model

yi = β0 + β1x1i + β2x2i + ei (7)

where E (ei | xi ) = 0.

Assume that yi is subject to missingness and assume that

P(δi = 1 | x1i , xi2, yi ) =
exp(φ0 + φ1x1i + φ2yi )

1 + exp(φ0 + φ1x1i + φ2yi )
.

Thus, x2i is the nonresponse instrument variable in this setup.
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Example 2 (Cont’d)

A consistent estimator of φ can be obtained by solving

Û2(φ) ≡
n∑

i=1

{
δ

π(φ; x1i , yi )
− 1

}
(1, x1i , x2i ) = (0, 0, 0). (8)

Roughly speaking, the solution to (8) exists almost surely if
E{∂Û2(φ)/∂φ} is of full rank in the neighborhood of the true value
of φ. If x2 is vector, then (8) is overidentified and the solution to (8)
does not exist. In the case, the GMM algorithm can be used.

Finding the solution to Û2(φ) = 0 can be obtained by finding the
minimizer of Q(φ) = Û2(φ)′Û2(φ) or QW (φ) = Û2(φ)′WÛ2(φ) where
W = {V (Û2)}−1.

Ch 6 P1 32 / 52



Example 2 (Cont’d)

Once the solution φ̂ to (8) is obtained, then a consistent estimator of
β = (β0, β1, β2) can be obtained by solving

Û1(β, φ̂) ≡
n∑

i=1

δi
π̂i
{yi − β0 − β1x1i − β2x2i} (1, x1i , x2i ) = (0, 0, 0)

(9)
for β.
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Asymptotic Properties

The asymptotic variance of β̂ obtained from (9) with φ̂ computed
from the GMM can be obtained by

V (θ̂) ∼=
(
Γ′aΣ−1a Γa

)−1
where

Γa = E{∂Û(θ)/∂θ}
Σa = V (Û)

Û = (Û ′1, Û
′
2)′

and θ = (β, φ).
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§4. Exponential tilting model approach
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Exponential tilting method

Motivation

Parameter θ defined by E{U(θ;X ,Y )} = 0.

We are interested in estimating θ from an expected estimating
equation:

n∑
i=1

[δiU(θ; xi , yi ) + (1− δi )E{U(θ; xi ,Y ) | xi , δi = 0}] = 0. (10)

The conditional expectation in (10) can be evaluated by using

f (y |x, δ = 0) = f (y |x)
P(δ = 0|x, y)

E{P(δ = 0|x, y)|x}
(11)

which requires correct specification of f (y | x; θ). Known to be
sensitive to the choice of f (y | x; θ).
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Exponential tilting method

Idea

Instead of specifying a parametric model for f (y | x), consider specifying a
parametric model for f (y | x, δ = 1), denoted by f1(y | x). In this case,

f0 (yi | xi ) = f1 (yi | xi )×
O (xi , yi )

E {O (xi ,Yi ) | xi , δi = 1}
, (12)

where fδ (yi | xi ) = f (yi | xi , δi = δ) and

O (xi , yi ) =
Pr (δi = 0 | xi , yi )
Pr (δi = 1 | xi , yi )

(13)

is the conditional odds of nonresponse.

Ch 6 P1 37 / 52



Remark

If the response probability follows from a logistic regression model

π(xi , yi ) ≡ Pr (δi = 1 | xi , yi ) =
exp {g(xi ) + φyi}

1 + exp {g(xi ) + φyi}
, (14)

where g(x) is completely unspecified, the expression (12) can be
simplified to

f0 (yi | xi ) = f1 (yi | xi )×
exp (γyi )

E {exp (γY ) | xi , δi = 1}
, (15)

where γ = −φ and f1 (y | x) is the conditional density of y given x
and δ = 1.

Model (15) states that the density for the nonrespondents is an
exponential tilting of the density for the respondents. The parameter
γ is the tilting parameter that determines the amount of departure
from the ignorability of the response mechanism. If γ = 0, the the
response mechanism is ignorable and f0(y |x) = f1(y |x).
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Estimation of tilting parameter

Sverchkov (2008) considered direct maximization of the observed
likelihood for φ: Given a parametric model for f1(y | x) and π(x, y ;φ),

find φ̂ that maximizes

lobs(φ) =
n∑

i=1

δi log π(xi , yi ;φ)+
n∑

i=1

(1−δi ) log

∫
{1−π(xi , y ;φ)}f̂1(y | xi )dy .

Riddles et al. (2015) proposed an alternative computational tool that
avoids computing the above integration using an EM-type algorithm.

Semiparametric extension (Morikawa et al., 2015): Use a
nonparametric density for f1(y | x).
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A Toy Example: Categorical Data (All dichotomous)

Example (SRS, n = 10)
ID Weight x1 x2 y

1 0.1 1 0 1
2 0.1 1 1 1
3 0.1 0 1 M
4 0.1 1 0 0
5 0.1 0 1 1
6 0.1 1 0 M
7 0.1 0 1 M
8 0.1 1 0 0
9 0.1 0 0 0

10 0.1 1 1 0
M: Missing
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A Toy Example (Cont’d)

Assume P(δ = 1 | x1, x2, y) = π(x1, y)

ID Weight x1 x2 y

1 0.1 1 0 1
2 0.1 1 1 1
3 0.1 · w3,0 0 1 0

0.1 · w3,1 0 1 1
4 0.1 1 0 0
5 0.1 0 1 1

w3,j = P̂(Y = j | X1 = 0,X2 = 1, δ = 0)

∝ P̂(Y = j | X1 = 0,X2 = 1, δ = 1)
1− π̂(0, j)

π̂(0, j)

with
w3,0 + w3,1 = 1
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A Toy Example (Cont’d)

ID Weight x1 x2 y

6 0.1 · w6,0 1 0 0
0.1 · w6,1 1 0 1

7 0.1 · w7,0 0 1 0
0.1 · w7,1 0 1 1

8 0.1 1 0 0
9 0.1 0 0 0

10 0.1 1 1 0

w6,j ∝ P̂(Y = j | X1 = 1,X2 = 0, δ = 1)
1− π̂(1, j)

π̂(1, j)

w7,j ∝ P̂(Y = j | X1 = 0,X2 = 1, δ = 1)
1− π̂(0, j)

π̂(0, j)

with
w6,0 + w6,1 = w7,0 + w7,1 = 1.
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Example (Cont’d)

E-step: Compute the conditional probability using the estimated
response probability π̂ab.

M-step: Update the response probability using the fractional weights.
For fully nonparametric model,

π̂ab =

∑
δi=1 I (x1i = a, yi = b)∑

δi=1 I (x1i = a, yi = b) +
∑

δi=0

∑1
j=0 wi ,j I (x1i = a, y∗ij = b)

The solution from the proposed method is π̂11 = 1, π̂10 = 3/4,
π̂01 = 1/3, π̂00 = 1.
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A Toy Example (Cont’d)

Example (Cont’d)

The method can be viewed as a fractional imputation method of Kim
(2011).

On the other hand, GMM method is more close to nonresponse
weighting adjustment.
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A Toy Example (Cont’d)

Example GMM method
ID Wgt 1 Wgt2 x1 x2 y

1 0.1 0.1π̂−111 1 0 1

2 0.1 0.1π̂−111 1 1 1
3 0.1 0.0 0 1 M

4 0.1 0.1π̂−110 1 0 0

5 0.1 0.1π̂−101 0 1 1
6 0.1 0.0 1 0 M
7 0.1 0.0 0 1 M

8 0.1 0.1π̂−110 1 0 0

9 0.1 0.1π̂−100 0 0 0

10 0.1 0.1π̂−110 1 1 0
M: Missing
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A Toy Example (Cont’d)

GMM method: Calibration equation∑
i

δi
π̂i
I (x1i = a, x2i = b) =

∑
i

I (x1i = a, x2i = b).

1 X1 = 1,X2 = 1: π̂−1
11 + π̂−1

10 = 2
2 X1 = 1,X2 = 0: π̂−1

11 + π̂−1
10 + π̂−1

10 = 4
3 X1 = 0,X2 = 1: π̂−1

01 = 3
4 X1 = 0,X2 = 0: π̂−1

00 = 1.

The solution of GMM method does not exist.
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§5 Callbacks
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Basic Setup

Consider a non-ignorable response mechanism of the form

Pr (δi = 1 | xi , yi ) = π(φ; xi , yi ) =
exp(φ0 + xiφ1 + yiφ2)

1 + exp(φ0 + xiφ1 + yiφ2)
. (16)

Clearly, the score equation cannot be solved because yi are not
observed when δi = 0.

To estimate the parameters in (16), we consider the special case when
there are some callbacks among nonrespondents. That is, among the
elements with δi = 0, further efforts are made to obtain the
observation of yi . Let δ2i = 1 if the element i is selected for a
callback or δi = 1 and δ2i = 0 otherwise. We assume that the
selection mechanism for the callback depends only δi . That is,

Pr (δ2 = 1 | x, y , δ) =

{
1 if δ = 1
ν if δ = 0

(17)

for some ν ∈ (0, 1].
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Lemma 6.2

Lemma

Assume that the response mechanism satisfies (16) and the followup
sample is randomly selected among the nonrespondents with probability ν.
Then, the response probability among the set with δi2 = 1 can be
expressed as

Pr (δi = 1 | xi , yi , δ2i = 1) =
exp(φ∗0 + xiφ

∗
1 + yiφ

∗
2)

1 + exp(φ∗0 + xiφ∗1 + yiφ∗2)
(18)

where φ∗0 = φ0 − ln(ν), (φ∗1, φ
∗
2) = (φ1, φ2), and (φ0, φ1, φ2) is defined in

(16).
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Proof of Lemma 6.2

By Bayes formula,

Pr (δ = 1 | x, y , δ2 = 1)

Pr (δ = 0 | x, y , δ2 = 1)
=

Pr (δ2 = 1 | x, y , δ = 1)

Pr (δ2 = 1 | x, y , δ = 0)
× Pr (δ = 1 | x, y)

Pr (δ = 0 | x, y)
.

By (17), the above formula reduces to

Pr (δ = 1 | x, y , δ2 = 1)

Pr (δ = 0 | x, y , δ2 = 1)
=

1

ν
× Pr (δ = 1 | x, y)

Pr (δ = 0 | x, y)
.

Taking the logarithm of the above equality, we have

φ∗0 + φ∗1x + φ∗2y = φ0 − ln(ν) + φ1x + φ2y .

Because the above relationship holds for all x and y , we have
φ∗0 = φ0 − ln(ν) and (φ∗1, φ

∗
2) = (φ1, φ2).
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Remark

By Lemma 6.2, the MLE of φ∗ can be obtained by maximizing the
conditional likelihood. That is, we solve

n∑
i=1

δ2i {δi − π(φ∗; xi , yi )} (xi , yi ) = 0 (19)

and then applying the transformation in Lemma 6.2. In particular, the
MLE for the slope (φ1, φ2) in (16) can be directly computed by
solving (19).

Variance-covariance matrix of (φ̂1, φ̂2) is the same as that of (φ̂∗1, φ̂
∗
2).
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Alternative method

Let fδ(x , y) be the joint density of (x , y) given δ, δ = 0, 1. The
response probability can be computed by, using Bayes formula,

P(δ = 1 | x , y) =
πf1(x , y)

πf1(x , y) + (1− π)f0(x , y)
,

where π = P(δ = 1). We can use the initial respondents to estimate
f1(x , y) and use the follow-up data to estimate f0(x , y).

If we fit f1(x , y) and f0(x , y) as normal distributions (with the same
variance-covariance matrix), the response probability follows from a
logistic regression model.
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