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e zi = (x;,yi),i =1,2,---, n: random sample

@ Parameter of interest (fp): defined by the (unique) solution to
E{U(#;2)} = 0.

@ Under complete response of zj,-- -, z,, a consistent estimator of 6 is
obtained by solving

U.(0) = ,172'1: U(6;z)=0
i=1

for 6. We assume that the solution 8, is unique.

Under some conditions, 0, converges in probability to 6.
Note that @, is asymptotically unbiased for 8* if E{U(0*; Z)} = 0.
What if some of y; are missing ?
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Two approaches

© Prediction model approach: use a model for y. solve
n 1Y [5iU(0; xi, i) + (1= ;) E{U(0; xi, i) | xi, 6 = 0}] =0
i=1

Prediction model approach was discussed in Chapter 2-4.

@ Response model approach: use a model for §; (response indicator
function).
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Complete-case (CC) method

e Solve Y 7, 6;U(6;z) =0 for 6.
@ The CC method lead to biased estimator unless Cov (6;, U;) =0,
where U; = U(fo; z;). So, unless the missing mechanism is missing

completely at random (MCAR), the CC method leads to biased
estimation.

@ Furthermore, the CC method does not make use of the observed
information of x; for §; = 0. Thus, it is not efficient.
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Weighted Complete-case (WCC) method

@ Solve
1
Zé;W—iU(G, z)=0 (1)
i=1
for 6, where m; = Pr(6; = 1| z)

@ The WCC method leads to unbiased estimator of 0y if 1/ is used as
the weight for unit /.

@ In survey sampling, 7; are known and the WCC method is very
popular (Horvitz-Thompson estimation) since it does not require the
model assumptions about unobserved y.
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WCC method (Cont'd)

@ In survey sampling, d; is the sampling indicator function. The
sampling indicator functions are not necessarily independent. Two
parameters can be considered, 0y (finite population quantity) and 6y
(infinite population quantity). When the finite population is a random
sample from an infinite population, called superpopulation, and the
parameter 6y is the superpopulation parameter.

@ We will only consider estimation of 8y and independent sampling
(Poisson sampling).
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Properties of WCC

@ Asymptotically unbiased
e Asymptotic variance: Assuming that Cov(d;,0;) = 0 for i # J,

v (3) = 7V { O}

where 7 = £ { U(6; 2) } and

v{0wo)} = v{0a00)}+E {n2 Z (x~1 1) U (60 Z,,)@a}
_ nlg{ 1Zﬂ (00: 2)° gn(go)@}

{ZZ” (bo:2) } @
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Properties of WCC

o A consistent estimator for the variance of fyy is computed by
V (0w) = 2705
where

? = *12(” Ubw; zj)

and

n
Vu = n_2 Z (5,‘7TI-_2 U(éw, Z,')®2
i=1
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Example 5.1

o Let the parameter of interest be § = E(Y') and we use
U(0;z) = (y — 0) to compute 0. The WCC estimator of 6 can be

written Z" 511/
i=1 9iYi/ T
S ©

o The asymptotic variance of fyy in (3) is equal to, by (2),

By —

n
n?y m (v - 0)? (4)
i=1
which is consistently estimated by

n 2
n? Z (5,'71',-_2 (y,- — éw> .
i=1
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Example 5.1 (Cont'd)

@ In survey sampling, the estimator (3) is called the Hajek estimator.
The asymptotic variance in (4) represents the asymptotic variance of
the Hajek estimator under Poisson sampling when the parameter 0 is
the superpopulation parameter.

o If the parameter is the finite population parameter, the asymptotic
variance of Oy in (3) is equal to

,QZ _ eN)

which is consistently estimated by
n A~ \2
n*2 Z (5,'71"-_1(7'('1-_1 — 1) (y,- — Qw) .
i=1
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If parameter 6 is estimated by solving >_7_; U(6; y;) = 0 under full sample.
Let ; be independently generated from Bernoulli(m;) distribution with

mi = 7(yi, z;) and 7(-) is a known function. We observe (y;, z;) only when
6; = 1. In this case, we can consider two types of propensity weights:

© Obtain 0; by solving

- “ 5;
U1(0) = U@o;y;) =0.
0= 7 U0)
@ Obtain , by solving
N "5
U(0) = ! U@o;y;) =0,
0=3 £0,5000)

where 7(y) = E{n(y,z) | y}.
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Remark (Cont'd)

In this case, we can prove that
E(61) = E(62) (5)

and

A

V(61) > V(6a). (6)
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65.2 Regression weighting method
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@ x;: auxiliary variables (observed throughout the sample)
o Assume that 1 = x/a for some a.
@ y;: study variable (observed only when ¢; = 1).

@ Regression weighting technique: Use

1 n / n -1
w; = (n ;X;) (2; (5,’X,‘Xi-> X
1= 1=

for the weight associated with unit i with §; = 1.
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@ Note that the regression estimator GA,eg =31 1 diwiy; of 8 = E(Y)
can be written as

~

ere = )_(/nBr (7)

where
n -1 n
Br = <Z 5ixix:'> Z 0iXiYi.
i=1 i=1

@ Under what conditions, the regression weighting method is justified
(in that the resulting estimator is asymptotically unbiased under the
response model) ?

Chs 16 / 70



Main Result (Fuller et al, 1994)

Assume that auxiliary variables x; are observed throughout the sample and
the response probability satisfies

— =xA (8)

for all unit 7 in the sample, where X is unknown. We assume that an
intercept is included in xi. Under these conditions, the regression estimator
defined by (23) is asymptotically unbiased for 6 = E(Y).
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Justification

@ Because an intercept term is included in x;, we have

where

and so

n -1 5
E (é\reg - é\n | X7Y> = )_(,n (Z 7T,'X,'Xi-> Zﬂ-ixi (Yi - x:'lén)
i=1 i=1

where the expectation is taken with respect to the response
mechanism.
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Justification (Cont'd)

@ Thus, to show that é,eg is asymptotically unbiased, we have only to

show that ,
> wix; ()/i - Xf‘f‘%) =0 (9)
i=1

holds.

e By (8), we have

i=1
= Zﬂ-l )‘X (I_ 'ﬂn)?
which implies that (9) holds.
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Variance estimation of the regression estimator

@ To discuss variance estimation of the regression estimator where the
covariates x; satisfy (8), note that

)_(m@r = )_(/n/B + )_(:1 (Br - B)
n -1 5
= X.B+X%, (Z 5,-x,-xf-> Z 0iX; (y,- - X:ﬂ)
i=1 i=1
n -1 n
~ 3 B+x (Z 77,-x,-xf-> Z 0ixX; ()/i - Xf',@)
i=1 i=1

where 3 is the probability limit of B,
@ By the fact that 1 is included in x; and by (8), it can be shown that

-1
[~ . 16
X, (Z 7TiXin') Z5ixi (yi - Xfﬂ) =, Z e (Yi - X:ﬂ) (10)
i=1 i=1 i=1 "'
by some matrix algebra.
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Variance estimation of the regression estimator

@ Approximate variance
1 n
Vv (9reg> ~ v <n Zl d,-) (11)
1=

where d; = x/3 + 5;7rf1 (yi — xiB).
@ Variance estimation can be implemented by using a standard variance
estimation formula applied to d; = x/3, + djnw;(y; — x/3,). That is,

() = 2000 (6 )

i=1

where c;f,, =" . di/n.
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85.3 Propensity score method
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@ z; = (xj,yi), yi is subject to missingness

@ Interested in estimating 6 which is defined by E{U(0; Z)} = 0.

@ The true response probability follows from a parametric model
mi = 7(zi; o)

for some ¢g € Q.

o The propensity score (PS) estimator of 6, denoted by Ops, is
computed by solving

Ups 9)—725 _U(o zj) =0, (12)

where 7t; = 7(z;; gZ;) and ¢ is the MLE of ¢y.
@ What is the asymptotic properties of Ops?
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@ The PS estimator 6’Ap5 is a function of é
o Note that (0Ap5, qg) is the solution to

UPS(97¢) =0
5() =0

where 5(¢) is the score function for ¢.

@ Thus, we can apply the sandwitch formula to obtain the asymptotic
variance of (0ps, ¢).

~

@ When ¢ is the MLE, then we may use Bartlett identity. (see Lemma
5.1)
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Lemma 5.1

Let

n
Ul (97 ¢) = Z Uil (97 QS) ;
i=1
where uj1(0, ¢) = ui1(0, ¢; zi, 0;), be an estimating equation satisfying

E {U1 (60, ¢0)} = 0.

Let m; = m; (¢) be the probability of response. Then,
E{—@Ul/agb} = COV(Ul,S) (13)

where S is the score function of ¢.

Note: If we set Ui (0, ¢) = S(¢), then (13) reduces to
E{—05(¢)/0¢} = E{S5(¢)®?}, which is already presented in Chapter 2
(Theorem 2.3).
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Since E {U1 (6o, ¢0)} = 0, we have
0 = OE{Ui(o,¢0)}/0¢
9
= == [ uir (6o, ¢o) f (9i | zi, ¢o) f (z;) ddidz;
>/

= Z/ |:aa¢u,'1 (eo,qﬁo)] f(éi ‘ Z,',¢0) f(z,') do;dz;
i=1

3 [ un (B0 00) 55 [F 5 2,600  (2) i
i=1
= E{0U/0¢} + E{U (o, o) S (¢0)}

which proves (13). O
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Asymptotic properties of PS estimator

@ Under some regularity conditions, the solution (9Ap5, gg) to

Ul (97 ¢) =0
5(9) = 0
is asymptotically normal with mean (6, ¢g)" and variance A~1BA'~1,
where
A E{—@Ul/(%?} E{-0U1/og} | _ { An A }
| E{-05/90}  E{-95/0¢} 0 Ax

C[v(e) c(ts) ] By 8
° = C(S,Ul> V(S) ][B; BZ]‘
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Asymptotic properties of PS estimator

@ Using
-1 -1 -1
Al — Air A AAy
0 A ’
we have
Var(Bps) = AT [Bir — A1Az Bot — BiaAyt Aty + AaAsyt Ban Ayt Ay ATt
o By Lemma 5.1, 522 = A22 and 512 = A12. Thus,

V(Bps) =2 ATt [Bi1 — Bi2By' B ATt (14)
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Asymptotic properties of PS estimator

o Note that dy, = HAW(QSO) with known ; satisfies
v (bw) = At BuAL.
@ Therefore, ignoring the smaller order terms, we have
Vv (éw) >V (éps) . (15)

@ The result of (15) means that the PS estimator with estimated 7; is
more efficient than the PS estimator with known ;.
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@ Using

b—do = {I(¢O)}_15(?0)
V(S) = Z(¢o) ={V(&)}

we can write (17) as

A

~ ~ ~ PR Tt BN
Ops = Ow — (9W,¢){ V(¢ )} <¢ - ¢o)
= G — C(0w, S) {V(5)} ! S(¢o)
which can be understood as a special case of Taylor linearization

ies = i (3) 2 o) £ | Zimion } [£ (2 st6)]  stoo)

when qAS is obtained by the MLE.
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o Writing fps = QAW(QAS) another way of understanding (14) is
vV (éps) ~ { vV (éW | 5L>} , (16)
where
vV (Y | XL) —V(Y) = C(Y,X){V(X)} P C(X,Y)

and S = 5(¢) is the score function of ¢.

@ Thus, the PS estimator éps with 7; = 7r,-(<$) with g% from the
maximum likelihood method can be viewed as a projection of Oy to
the orthogonal complement of the space generated by S(¢). That is,
we can express

Ops = E{Oy | S*Y=0w — C(Ow,S) {V(S)} tS(d).  (17)
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Variance estimation of the PS estimator

@ If we assume that the response mechanism is MAR and follows the
following parametric model

mi = (Xi; ¢o) (18)

for some ¢ € Q, where x; are completely observed in the sample. In
this case, the propensity score can be estimated by the maximum
likelihood method that solves

= - i — TA\Xj, 1 7 (x;; =
:g{él ( I’(ﬁ)}ﬂ'(X,';Qﬁ) {1 71_(XI ¢)} ( I ) 07

(19)

where 7 (x;; ¢) = O (x;; @) /0.
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Variance estimation of the PS estimator (Cont'd)

@ Using (14), a plug-in variance estimator of the PS estimator is
computed by

\7 (éP.S) = AAl_ll |:éll — élzé2_21321:| AA;[II
where Ay = n1 Yo 5i7fflu(é? z;) and

éll = 722(5 A_2U 9 Z,
B = —225 #7177 — 1)U(G; z)h;
ézz = n_225iﬁfl(frfl — 1)h,’h:-

where 0 = ps and h; = 7i /(1 — 7).
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Improving the efficiency of PS estimator

e We want to improve the efficiency of the PS estimator in (12) by
incorporating the auxiliary variable x; observed throughout the sample.

@ One can consider a class of estimating equations of the form
n 1 n
(5,‘*U9; ,-,,-—b&;,- b9;,-:0 20
;ﬁi{(xy) (X)}+;(X) (20)

where b(0; x;) is to be determined.

@ We can write the solution to (20) as 0, as it depends on the
particular choice of b(6; x) function.

o Note that the solution 8, is consistent regardless of the choice of
b(0; x;).

e We want to find an optimal choice b*(0; x;) which minimizes the
variance of 6.
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Theorem 5.1 (Robins et al., 1994)

Theorem

Assume that the probability Pr(0 =1 | x,y) = w(x) does not depend on
the value of y. Let @), be the solution to (20) for given b(6; x;). Under
some regularity conditions, 0y is consistent and its asymptotic variance
satisfies

()

where T = E(OU/06") and the equality holds when
b*(0; x;) = E{U(6: x;, i) | xi}.

V (B5) = nr? [v (E(U| X)} + E {LV(U | X)H 1, (1)
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Example 5.4

@ Consider the sample from a linear regression model
yi =xiB+ e (22)

where ¢; are independent with E(e; | x;) = 0. Assume that x; are
available from the full sample and y; are observed only when §; = 1.
The response propensity model follows from the logistic regression
model with logit(7;) = x}¢. We are interested in estimating
0 = E(Y) from the partially observed data.

@ To construct the optimal estimator that achieves the minimum
variance in (21), we can use U;j(6) = y; — 6 and b} () =x/3 — 6.
Thus, the optimal estimator using 13,*(9) = xf,@ — 6 in (20) is given by

/
sy 1RO 1< " 5 5
eopt(/B) = ; Z; ﬁ*i)/i + ; (Z; X — Z; 7ATiXi> B (23)
where 3 is any estimator of 3 satisfying ﬁ(,@ — B) = Op(1), where
Xn = Op(1) denotes that X, is bounded in probability.
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Example 5.4 (Cont’d)

o Note that the choice of 3 does not play any leading role in the
asymptotic variance of 0,p¢(/3). This is because

éopt(,@) = éopt(ﬂo) + E { 685 opt(,@o)} (B - Bo) (24)

and, under the correct response model,

E{%o,)t(ﬁo} { <Zx, ZA' -)}go

and so the second term of (24) becomes negligible. Furthermore, it
can be shown that the choice of ¢ in #; = 7;(¢) does not matter as
long as the regression model holds.
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§5.4 Optimal estimation
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@ In Example 5.4, optimal estimator using auxiliary information is
considered, under the (outcome) regression model (22).

e We now want to find the optimal estimator (using auxiliary
information) without relying on the outcome regression model.

o Note that Opsa = n~! Son 1 diyi/®i applied to y; = x; does not
necessarily lead to X, = n"1 Y"1 | x;.

e That is, we have two estimators of E(X), xpsa and X,.

@ How to incorporate the extra information without relying on the
regression model ?

@ More generally, suppose that we have over-identified parameters (i.e.
number of estimating equations > number of parameters). How to
obtain a best estimator 7
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GMM (Generalized method of moment) estimation

0: p-dimensional parameter
U(0; Z) = 0: a system of estimating equations of size m > p.

No unique solution exists.

Let W(0) be a m x m symmetric matrix. Define
Qw(0) = {U(6; Z)} W(0)U(0: 2).

Note that 8y, = arg min Qu/(#) is now uniquely determined under
some regularity conditions. Note that the solution 0y is obtained by

solvin
¢ Uw(0) = {U(6; 2)Y W(O)U(6; Z) =0

where U(0; z) = dU(0; z)/06.
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GMM estimation (Cont'd)

@ Thus, the asymptotic variance of Oy is

v () = {E (889, UW(9)> }1 V{Uw(0)} {E <aa9/ UW(0)>/}

= {7 WT}_l WV (U)Wt {7’ WT}_l ,

-1

where W = W(0) and 7 = E(QU/0¢’). The asymptotic variance is
minimized at
W= {v(u)n .

@ Thus, the GMM estimator of 8 is obtained by minimizing
Q*(0) = {U(8; 2)} {Var(U(6; Z))} * U(6; Z).

The asymptotic variance of the GMM estimator is [7/{ V(U)}_lT]_l.
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Lemma 5.2

Lemma

Assume that )A(l and )A(g are two unbiased estimators of uy and Y is an
unbiased estimator of ji,. Let

Xq —

X Vi) X CCa, Y)Y\ (-
o= | om | | ) v cten) ) | %o
Y~ ny cK.¥) C¥)  V(Y) V-,
(25)
The optimal estimator of (fix, jt,) that minimizes Q in (25) is
fr =o' Xy + (1 —a*) X (26)
and
= V4B (%) +B (- %) (27)
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Lemma (Cont'd )

where

*_

and

V(X2) — C(X1, X2)

V(X)) + V(X2) — 2C (X1, Xa)
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Proof.
Using the inverse of the partitioned matrix, we can write

Q=0+

where
x A N 1 A
le<)fl_,ux >/< VA(Xl) C(Xl,,\Xz) ) <)51—,U,X )
Xo — puix C(X1,X2)  V(X2) Xo—px )’
~ ~ Y A / ~ ~ Y A
Q= {Y ~E(Y | X1,X2)} Vi {Y —E(Y | Xl,Xg)},

E(Y | X1, %) = ty + B1(X1 — p1x) + Ba(Xa — pux),

and Vee = V(Y) — (B1, B2){V(X1, X2)} "1(By, By)'.
Minimizing Q1 with respect to uy gives [i% in (26) and minimizing Q. with
respect to yu, for given [} gives fij, in (27). O

V.
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@ The optimal estimator of y, takes the form of the regression
estimator with i} as the control.

e Using (26), we can also express

i = V(P -R){v(%e-%)) (- R,
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@ Under the missing data setup where x; is always observed and y; is
subject to missingness, if we know 7, then we can use
)%1 =nt 27:1 X; = )%,,, )%2 =nt 27:1 5,‘X,’/7T,' = Xw, and
\/} = n’l 27:1 (Siy,'/TF,' = \/}W

@ In this case, we can obtain i = X; and the optimal estimator of [y

reduces to
f, = Vec(Vi-f){v(e-%)) (-
= Yu+ (X, — Xw)B*
where

n -1 n
B* = E (Z 1 7—T'7T,'x’_x:'> E (Z 1 7—T'7l'ix’_yi> '

1
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Optimal PS estimation

GMM approach
o Let 6 = (fux, f1y). We have three estimators for two parameters.

@ Find 0 that minimizes

— — -1 —
R Xn — Mx , . AXn )fn — Mx
QPS(G) = QX,PS — Mx v Q\X,PS Q\X,PS — Hx
Oy.ps — iy Oy.ps Oy.ps — 11y

(28)
where Ops = 0ps(¢) is the propensity score estimator using 7;.

@ Computation for V is somewhat cumbersome.
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Optimal PS estimation (Cont'd)

Alternative GLS (or GMM) approach
e Find (0, ¢) that minimizes

Xn — Mx ' Xn - Xn — Ix
QX,PS((b) — Mx \7 éx,PS(¢) 9:X,PS(¢) — Mx
Oy,ps(9) — ny Oy,ps(¢) Oy,ps(®) — py

5(¢) 5(¢) 5(¢)

o Computation for V is easier since we can treat ¢ as if known.

o Let Q*(¢, ¢) be the above objective function. It can be shown that
Q* (0, ¢) = Qps(#) in (28) and so minimizing Q*(6, ¢) is equivalent
to minimizing Qps(6).
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Optimal PS estimation (Cont'd)

Justification for the equivalence

o May write

G = (0= (1 v ) (G
= Q0| 6) + Qo)

where
QO16) = (Ops — ViaVi'S) {V (Ues | S} (s — ViaVi's)
@) = S {0} s©)

o For the MLE ¢, we have Qx(¢) =0 and Q1(0 | ¢) = Qps(6).
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Example 5.5

@ Response model

o exp(d + i)
") = T exp(0g + o1x)

@ Three direct PS estimators of (1, jix, ity ):

n
(O1,ps,0xps, 0y ps) = 1> 6 (1, %1, i)
i=1

o X, =n"13" x; available.

e What is the optimal estimator of y, ?
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Example 5.5 (Cont'd)

@ Minimize
/ — -1 -
— Mx Xn Xn — Mx
A9A1 (¢) -1 | Oues(9) O1,ps(9) — 1
ex PS (¢) /J’X 4 Q\X,PS(QZ)) QX,PS(Qb) — Hx
0y,ps(9) — 0y.ps(9) Oy,ps(¢) —
5(¢) 5(¢) 5(9)

with respect to (fix, jty, @), Where

n

05 (e

i=1

with h;(¢) = m;(¢)(1, ;).
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Example 5.5 (Cont'd)

e Equivalently, minimize

1 ~

Oy ps(®) — 1y / Oy,ps(¢) Oy.ps(®) — 1y

b1ps(9) —1 vl ties(9) 01,ps(¢) — 1

9x,PS(¢) — Xn GX,PS(d)) — Xn 9x,PS(¢) — Xn
5(e) S(e) S(e)

with respect to (1, ¢), since the optimal estimator of 6y is X,.
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Example 5.5 (Cont'd)

@ The solution can be written as

fiy.opt = 0y ps + (1 - él,PS) Bo + <)_(n - él,PS) B + {0 - 5(43)} ¢

where
Bo ; 1 1\ " s 1
B | =3 dibi| xi Xi > oibi | x| i
é i=1 h,' h,' i=1 h,'

and b; = 7;73(1 — 7).

o Note that the last term {0 — S(¢)}C, which is equal to zero, does

not contribute to the point estimation. But, it is used for variance
estimation.
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Example 5.5 (Cont'd)

@ That is, for variance estimation, we simply express

n
,ay,opt = n_l Zﬁl
i=1
where
~ S A ;A dj > > Y
fli = Bo + xiB1 + h; C + = (}/i — By — xiB1 — hiC)
1

and apply the standard variance formula to #;.
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Example 5.5 (Cont'd)

@ The optimal estimator is linear in y. That is, we can write

) 1= §;
My, opt = ; Z ﬁfl.gi}/i = Z WiYi
i=1 ! 5i=1

where g; satisfies

n n

Z %gi(laxh hi) = 2(17Xi7 hi)

i=1 ! i=1

@ Thus, it is doubly robust under the outcome model
E(y | x) = o + f1x in the sense that fi, oot is unbiased when either
the response model or the outcome model holds.
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§5.5 Doubly robust method
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5. Doubly robust method

@ Two models
e Response Probability (RP) model: model about &

Pr(6 =1xy)=n(x¢)
o Outcome Regression (OR) model: model about y
E(y [ x) = m(xi; B)

@ Doubly robust (DR) estimation aims to achieve (asymptotic)
unbiasedness under either RP model or OR model.

e For estimation of § = E(Y'), a doubly robust estimator is
5 1 B
Opr = — Vi+ — (vi — Vi
DR n;{y—i‘ﬁi(y )/)}
where §; = m(x;; 3) and #; = m(x;; ).
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5. Doubly robust method

@ Note that

n
R R B 5 A
GDR—G,,:n 12(%—1)()/,'—}/,'). (29)
i=1 N

Taking an expectation of the above, we note that the first term has
approximate zero expectation if the RP model is true. The second
term has approximate zero expectation if the OR model is true. Thus,
Opr is approximately unbiased when either RP model or OR model is

true.

@ When both models are true, then the choice of ﬁA and quS does not
make any difference in the asymptotic sense. Robins et al (1994)
called the property local efficiency of the DR estimator.
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5. Doubly robust method

e Kim and Riddles (2012) considered an augmented propensity model
of the form

TR E— )
7i(¢) + {1 — mi(®)} exp(Ao + Arri)

where 7r,-(qA5) is the estimated response probability under the response
probability model and (Ao, A1) satisfies

i=1 7Ti ((ZS, )‘) i=1

with m; = m(x;; ).
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5. Doubly robust method

o The augmented PS estimator, defined by 55 = n=1 S0, 8y, /77,
based on the augmented propensity in (30) satisfies, under the
assumed response probability model,

n

N 1 ~ ~ &; ~ roa
gpsgnZ{bo+b1m;+7Ar,(y;—bo—b1mi>}7 (32)
i=1 !
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5. Doubly robust method

@ The augmented PS estimator using

~

T

#F =7, N) = < - SIS
7r,-+{1—7T,-}exp(/\o/7r,-—|—/\1x,-/7r,-)

with (Ao, A1) satisfying
n n

5; N B
> Y (LX) = > (1,x)

i=1 T i=1

is asymptotically equivalent to the optimal regression PS estimator
discussed in Example 5.5.
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6. Nonparametric method

Motivation
@ So far, we have assumed a parametric model for
m(x) = Pr(d =1 x).
@ Using the nonparametric regression technique, we can use a
nonparametric estimator of 7(x) given by a nonparametric regression
estimator of w(x) = E(d | x) can be obtained by

T 0iKn(x
'ﬁ'h(X) — Zlil ! h(Xl?X)7
> i1 Kn(xi, x)
where Kj, is the kernel function which satisfies certain regularity
conditions and h is the bandwidth.

@ Once a nonparametric estimator of 7(x) is obtained, the
nonparametric PS estimator Oyps of 6p = E(Y) is given by

(33)

n

A 1 0;
Onps == =i (34)

n 1 ﬁ'h(X,')
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6. Nonparametric method

Theorem 5.2
Under some regularity conditions, we have

n

Ones =+ 3 |mlo) + = (= m}] +0a(n ). (39

i=1

where m(x) = E(Y | x) and 7(x) = P(0 = 1| x). Furthermore, we have

vn (éNPS - 9) — N (0,01),

where 02 = V {m (X)} + E [{= (X)} 1V (Y | X)].

Originally proved by Hirano et al. (2003).
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6. Nonparametric method

Remark

@ Unlike the usual asymptotic for nonparametric regression,
\/n-consistency is established.

@ The nonparametric PS estimator achieves the lower bound of the
variance that was discussed in Theorem 5.1.

@ Instead of nonparametric PS method, we can use the same Kernel
regression technique to obtain a nonparametric imputation estimator
given by

Onpr = Z {Giyi + (1 = 6i)mn(xi)} (36)

where Z" 5. )
o _ i=1 9i R\ Xi, X)Yi
() > 0iKa(xis x)

Cheng (1994) proves that Onp has the same asymptotic variance in
Theorem 5.2.
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7. Application to longitudinal missing

Basic Setup

X; is always observed and remains unchanged for t =0,1,..., T.

Y;: is the response for subject i at time t.

djt: The response indicator for subject i at time t.

Assuming no missing in the baseline year, Yy can be absorbed into X.

Monotone missing pattern

0t =0=0j¢41=0,Vt=1,..., T -1
Li¢=(X!,Yn,...,Yit) : Measurement up to t.
Parameter of interest 6 is estimated by solving

> U Lir)=0
i=1

for 6, under complete response.
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Application to longitudinal missing

Missing mechanism (under monotone missing pattern)

e Missing completely at random (MCAR) :
P(0it=110i t—1 = 1, Li 1) = P(dit=1|0i —1 = 1).
e Covariate-dependent missing (CDM) :
P(0ir = 1|6j -1 =1,L; 1) = P(0jir = 1]6j -1 = 1, X;).
e Missing at random (MAR) :

P(0ir = 1|6it—1=1,L; 7) = P(0jr = 1{6i -1 = 1, Lj +—1).

e Missing not at random (MNAR) : Missing at random does not
hold.
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Application to longitudinal missing

Motivation

@ Panel attrition is frequently encountered in panel surveys, while
classical methods often assume covariate-dependent missing, which
can be unrealistic. We want to develop a PS method under MAR.

@ Want to make full use of available information.
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Application to longitudinal missing

Idea
@ Under MAR, in the longitudinal data case, we would consider the
conditional probabilities:

pit = P(0jir = 10j -1 =1,Li¢—1), t=1,..., T.

Then .
Tit = H Pij-
j=1

7t then can be modeled through modeling p; with ps(Li—1; ¢¢).
@ Once we obtain ;7 = H;l pit is obtained, we can use

n

> i U@;Li7)=0
=1 T

to obtain a consistent estimator of 6.
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Application to longitudinal missing

Score Function for Longitudinal Data Under parametric models for p;'s,
the partial likelihood for ¢1,...,¢71 is

k C16it-1
oo = TTTL [0
i=1t=1
and the corresponding score function is (S1(¢1),...,S7(é71)), where

t) = Z 0it—1{0it — pit(¢e)} qie(¢pe) =0
i—1

where q;t(¢+) = Ologit{pit(¢¢)}/Id+. Under logistic regression model such
that pr = 1/{1 + exp(—¢,Lt—1)}, we have q;t(¢¢) = L—1.
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Application to longitudinal missing

Remark
@ Zhou and Kim (2012) proposed an optimal estimator of p; = E(Y:)
incorporating all available information.
@ The idea can be extended to non-monotone missing data by
re-defining

t
me=P(n=-=0e=1]Le)=]]py
j=1
where
pit := P(6it = 1|0j1 = --- = 6ip—1 =1, Lit1).
@ The score equation for ¢; in pir = p(Li¢—1; ¢¢) is then
n
Se(¢) = Z 5;'{}71 {6t — pit(¢¢)} qie(pr) = 0
i=1

where 07, | = Hf;i djj and qit(¢¢) = Ologit{ pit(p¢)}/0pe.
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