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Basic Setup

zi = (xi , yi ), i = 1, 2, · · · , n: random sample

Parameter of interest (θ0): defined by the (unique) solution to
E{U(θ;Z )} = 0.

Under complete response of z1, · · · , zn, a consistent estimator of θ is
obtained by solving

Ûn(θ) ≡ 1

n

n∑
i=1

U(θ; zi ) = 0

for θ. We assume that the solution θ̂n is unique.

Under some conditions, θ̂n converges in probability to θ0.

Note that θ̂n is asymptotically unbiased for θ∗ if E{U(θ∗;Z )} = 0.

What if some of yi are missing ?
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Two approaches

1 Prediction model approach: use a model for y . solve

n−1
n∑

i=1

[δiU(θ; xi , yi ) + (1− δi )E{U(θ; xi , yi ) | xi , δi = 0}] = 0

Prediction model approach was discussed in Chapter 2-4.

2 Response model approach: use a model for δi (response indicator
function).
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Complete-case (CC) method

Solve
∑n

i=1 δiU(θ; zi ) = 0 for θ.

The CC method lead to biased estimator unless Cov (δi ,Ui ) = 0,
where Ui = U(θ0; zi ). So, unless the missing mechanism is missing
completely at random (MCAR), the CC method leads to biased
estimation.

Furthermore, the CC method does not make use of the observed
information of xi for δi = 0. Thus, it is not efficient.
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Weighted Complete-case (WCC) method

Solve
n∑

i=1

δi
1

πi
U(θ; zi ) = 0 (1)

for θ, where πi = Pr (δi = 1 | zi )
The WCC method leads to unbiased estimator of θ0 if 1/πi is used as
the weight for unit i .

In survey sampling, πi are known and the WCC method is very
popular (Horvitz-Thompson estimation) since it does not require the
model assumptions about unobserved y .
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WCC method (Cont’d)

In survey sampling, δi is the sampling indicator function. The
sampling indicator functions are not necessarily independent. Two
parameters can be considered, θN (finite population quantity) and θ0
(infinite population quantity). When the finite population is a random
sample from an infinite population, called superpopulation, and the
parameter θ0 is the superpopulation parameter.

We will only consider estimation of θ0 and independent sampling
(Poisson sampling).
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Properties of WCC

Asymptotically unbiased

Asymptotic variance: Assuming that Cov(δi , δj) = 0 for i 6= j ,

V
(
θ̂W

)
∼= τ−1V

{
ÛW (θ0)

}
τ−1

′

where τ = E
{
U̇(θ0;Z )

}
and

V
{
ÛW (θ0)

}
= V

{
Ûn (θ0)

}
+ E

{
n−2

n∑
i=1

(
π−1i − 1

)
U (θ0; zi )

⊗2

}

= n−1E

{
n−1

n∑
i=1

π−1i U (θ0; zi )
⊗2 − Ūn (θ0)⊗2

}

∼= E

{
n−2

n∑
i=1

π−1i U (θ0; zi )
⊗2

}
. (2)
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Properties of WCC

A consistent estimator for the variance of θ̂W is computed by

V̂
(
θ̂W

)
= τ̂−1V̂u τ̂

−1′

where

τ̂ = n−1
n∑

i=1

δiπ
−1
i U̇(θ̂W ; zi )

and

V̂u = n−2
n∑

i=1

δiπ
−2
i U(θ̂W ; zi )

⊗2.
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Example 5.1

Let the parameter of interest be θ = E (Y ) and we use
U(θ; z) = (y − θ) to compute θ. The WCC estimator of θ can be
written

θ̂W =

∑n
i=1 δiyi/πi∑n
i=1 δi/πi

. (3)

The asymptotic variance of θ̂W in (3) is equal to, by (2),

n−2
n∑

i=1

π−1i (yi − θ)2 (4)

which is consistently estimated by

n−2
n∑

i=1

δiπ
−2
i

(
yi − θ̂W

)2
.
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Example 5.1 (Cont’d)

In survey sampling, the estimator (3) is called the Hajek estimator.
The asymptotic variance in (4) represents the asymptotic variance of
the Hajek estimator under Poisson sampling when the parameter θ is
the superpopulation parameter.

If the parameter is the finite population parameter, the asymptotic
variance of θ̂W in (3) is equal to

n−2
n∑

i=1

(π−1i − 1) (yi − θN)2

which is consistently estimated by

n−2
n∑

i=1

δiπ
−1
i (π−1i − 1)

(
yi − θ̂W

)2
.
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Remark

If parameter θ is estimated by solving
∑n

i=1 U(θ; yi ) = 0 under full sample.
Let δi be independently generated from Bernoulli(πi ) distribution with
πi = π(yi , zi ) and π(·) is a known function. We observe (yi , zi ) only when
δi = 1. In this case, we can consider two types of propensity weights:

1 Obtain θ̂1 by solving

Û1(θ) ≡
n∑

i=1

δi
π(yi , zi )

U(θ; yi ) = 0.

2 Obtain θ̂2 by solving

Û2(θ) ≡
n∑

i=1

δi
π̃(yi )

U(θ; yi ) = 0,

where π̃(y) = E{π(y , z) | y}.
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Remark (Cont’d)

In this case, we can prove that

E (θ̂1) = E (θ̂2) (5)

and
V (θ̂1) ≥ V (θ̂2). (6)
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§5.2 Regression weighting method
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Motivation

xi : auxiliary variables (observed throughout the sample)

Assume that 1 = x′ia for some a.

yi : study variable (observed only when δi = 1).

Regression weighting technique: Use

wi =

(
1

n

n∑
i=1

xi

)′( n∑
i=1

δixix
′
i

)−1
xi

for the weight associated with unit i with δi = 1.
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Motivation

Note that the regression estimator θ̂reg =
∑n

i=1 δiwiyi of θ = E (Y )
can be written as

θ̂reg = x̄′nβ̂r (7)

where

β̂r =

(
n∑

i=1

δixix
′
i

)−1 n∑
i=1

δixiyi .

Under what conditions, the regression weighting method is justified
(in that the resulting estimator is asymptotically unbiased under the
response model) ?
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Main Result (Fuller et al, 1994)

Assume that auxiliary variables xi are observed throughout the sample and
the response probability satisfies

1

πi
= x′iλ (8)

for all unit i in the sample, where λ is unknown. We assume that an
intercept is included in xi. Under these conditions, the regression estimator
defined by (23) is asymptotically unbiased for θ = E (Y ).
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Justification

Because an intercept term is included in xi , we have

θ̂n ≡ ȳn = x̄′nβ̂n

where

β̂n =

(
n∑

i=1

xix
′
i

)−1 n∑
i=1

xiyi .

Note that we can write

θ̂reg − θ̂n = x̄′n

(
n∑

i=1

δixix
′
i

)−1 n∑
i=1

δixi
(
yi − x′i β̂n

)
and so

E
(
θ̂reg − θ̂n | X,Y

)
∼= x̄′n

(
n∑

i=1

πixix
′
i

)−1 n∑
i=1

πixi
(
yi − x′i β̂n

)
where the expectation is taken with respect to the response
mechanism.
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Justification (Cont’d)

Thus, to show that θ̂reg is asymptotically unbiased, we have only to
show that

n∑
i=1

πixi
(
yi − x′i β̂n

)
= 0 (9)

holds.

By (8), we have

0 =
n∑

i=1

(
yi − xi β̂n

)
=

n∑
i=1

πi
(
λ′xi

) (
yi − x′i β̂n

)
,

which implies that (9) holds.
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Variance estimation of the regression estimator

To discuss variance estimation of the regression estimator where the
covariates xi satisfy (8), note that

x̄′nβ̂r = x̄′nβ + x̄′n

(
β̂r − β

)
= x̄′nβ + x̄′n

(
n∑

i=1

δixix
′
i

)−1 n∑
i=1

δixi
(
yi − x′iβ

)
∼= x̄′nβ + x̄′n

(
n∑

i=1

πixix
′
i

)−1 n∑
i=1

δixi
(
yi − x′iβ

)
where β is the probability limit of β̂r

By the fact that 1 is included in xi and by (8), it can be shown that

x̄′n

(
n∑

i=1

πixix
′
i

)−1 n∑
i=1

δixi
(
yi − x′iβ

)
=

1

n

n∑
i=1

δi
πi

(
yi − x′iβ

)
(10)

by some matrix algebra.
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Variance estimation of the regression estimator

Approximate variance

V
(
θ̂reg

)
∼= V

(
1

n

n∑
i=1

di

)
(11)

where di = x′iβ + δiπ
−1
i (yi − x′iβ).

Variance estimation can be implemented by using a standard variance
estimation formula applied to d̂i = x′i β̂r + δinwi (yi − x′i β̂r ). That is,

V̂
(
θ̂reg

)
=

1

n

1

n − 1

n∑
i=1

(
d̂i − ¯̂dn

)2
where ¯̂dn =

∑n
i=1 d̂i/n.
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§5.3 Propensity score method
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Motivation

zi = (xi , yi ), yi is subject to missingness

Interested in estimating θ which is defined by E{U(θ;Z )} = 0.

The true response probability follows from a parametric model

πi = π(zi ;φ0)

for some φ0 ∈ Ω.

The propensity score (PS) estimator of θ, denoted by θ̂PS , is
computed by solving

ÛPS(θ) ≡ 1

n

n∑
i=1

δi
1

π̂i
U (θ; zi ) = 0, (12)

where π̂i = π(zi ; φ̂) and φ̂ is the MLE of φ0.

What is the asymptotic properties of θ̂PS?
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Idea

The PS estimator θ̂PS is a function of φ̂.

Note that (θ̂PS , φ̂) is the solution to

ÛPS (θ, φ) = 0

S (φ) = 0

where S(φ) is the score function for φ.

Thus, we can apply the sandwitch formula to obtain the asymptotic
variance of (θ̂PS , φ̂).

When φ̂ is the MLE, then we may use Bartlett identity. (see Lemma
5.1)
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Lemma 5.1

Lemma

Let

U1 (θ, φ) =
n∑

i=1

ui1 (θ, φ) ,

where ui1(θ, φ) = ui1(θ, φ; zi , δi ), be an estimating equation satisfying

E {U1 (θ0, φ0)} = 0.

Let πi = πi (φ) be the probability of response. Then,

E {−∂U1/∂φ} = Cov (U1, S) (13)

where S is the score function of φ.

Note: If we set U1 (θ, φ) = S(φ), then (13) reduces to
E {−∂S(φ)/∂φ} = E

{
S(φ)⊗2

}
, which is already presented in Chapter 2

(Theorem 2.3).
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Proof.

Since E {U1 (θ0, φ0)} = 0, we have

0 = ∂E {U1 (θ0, φ0)} /∂φ

=
n∑

i=1

∂

∂φ

∫
ui1 (θ0, φ0) f (δi | zi , φ0) f (zi ) dδidzi

=
n∑

i=1

∫ [
∂

∂φ
ui1 (θ0, φ0)

]
f (δi | zi , φ0) f (zi ) dδidzi

+
n∑

i=1

∫
ui1 (θ0, φ0)

∂

∂φ
[f (δi | zi , φ0)] f (zi ) dδidzi

= E {∂U/∂φ}+ E {U (θ0, φ0) S (φ0)}

which proves (13).
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Asymptotic properties of PS estimator

Under some regularity conditions, the solution (θ̂PS , φ̂) to

Û1 (θ, φ) = 0

S (φ) = 0

is asymptotically normal with mean (θ0, φ0)′ and variance A−1BA
′−1,

where

A =

[
E
{
−∂Û1/∂θ

}
E {−∂U1/∂φ}

E {−∂S/∂θ} E {−∂S/∂φ}

]
=

[
A11 A12

0 A22

]

B =

 V
(
Û1

)
C
(
Û1,S

)
C
(
S , Û1

)
V (S)

 =

[
B11 B12

B21 B22

]
.
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Asymptotic properties of PS estimator

Using

A−1 =

[
A−111 −A−111 A12A

−1
22

0 A−122

]
,

we have

Var(θ̂PS) ∼= A−111

[
B11 − A12A

−1
22 B21 − B12A

−1
22 A

′
12 + A12A

−1
22 B22A

−1
22 A

′
12

]
A

′−1
11 .

By Lemma 5.1, B22 = A22 and B12 = A12. Thus,

V (θ̂PS) ∼= A−111

[
B11 − B12B

−1
22 B21

]
A
′−1
11 . (14)
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Asymptotic properties of PS estimator

Note that θ̂W = θ̂W (φ0) with known πi satisfies

V
(
θ̂W

)
∼= A−111 B11A

−1′
11 .

Therefore, ignoring the smaller order terms, we have

V
(
θ̂W

)
≥ V

(
θ̂PS

)
. (15)

The result of (15) means that the PS estimator with estimated πi is
more efficient than the PS estimator with known πi .
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Remark

Using

φ̂− φ0 = {I(φ0)}−1 S(φ0)

V (S) = I(φ0) = {V (φ̂)}−1

we can write (17) as

θ̂PS ∼= θ̂W − C (θ̂W , φ̂)
{
V (φ̂)

}−1 (
φ̂− φ0

)
∼= θ̂W − C (θ̂W ,S) {V (S)}−1 S(φ0)

which can be understood as a special case of Taylor linearization

θ̂PS ≡ θ̂W (φ̂) ∼= θ̂W (φ0)−E
{
∂

∂φ′
θ̂W (φ0)

}[
E

(
∂

∂φ′
S(φ0)

)]−1
S(φ0),

when φ̂ is obtained by the MLE.

Ch 5 30 / 70



Remark

Writing θ̂PS = θ̂W (φ̂), another way of understanding (14) is

V
(
θ̂PS

)
∼= E

{
V
(
θ̂W | S⊥

)}
, (16)

where

V
(
Y | X⊥

)
= V (Y )− C (Y ,X ) {V (X )}−1 C (X ,Y )

and S = S(φ) is the score function of φ.

Thus, the PS estimator θ̂PS with π̂i = πi (φ̂) with φ̂ from the
maximum likelihood method can be viewed as a projection of θ̂W to
the orthogonal complement of the space generated by S(φ). That is,
we can express

θ̂PS ∼= E{θ̂W | S⊥} ≡ θ̂W − C (θ̂W ,S) {V (S)}−1 S(φ0). (17)
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Variance estimation of the PS estimator

If we assume that the response mechanism is MAR and follows the
following parametric model

πi = π (xi ;φ0) (18)

for some φ0 ∈ Ω, where xi are completely observed in the sample. In
this case, the propensity score can be estimated by the maximum
likelihood method that solves

S(φ) ≡
n∑

i=1

{δi − π (xi ;φ)} 1

π (xi ;φ) {1− π (xi ;φ)}
π̇ (xi ;φ) = 0,

(19)
where π̇ (xi ;φ) = ∂π (xi ;φ) /∂φ.
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Variance estimation of the PS estimator (Cont’d)

Using (14), a plug-in variance estimator of the PS estimator is
computed by

V̂
(
θ̂PS

)
= Â−111

[
B̂11 − B̂12B̂

−1
22 B̂21

]
Â
′−1
11

where Â11 = n−1
∑n

i=1 δiπ
−1
i U̇(θ̂; zi ) and

B̂11 = n−2
n∑

i=1

δi π̂
−2
i U(θ̂; zi )

⊗2

B̂12 = n−2
n∑

i=1

δi π̂
−1
i (π̂−1i − 1)U(θ̂; zi )hi

B̂22 = n−2
n∑

i=1

δi π̂
−1
i (π̂−1i − 1)hih

′
i

where θ̂ = θ̂PS and hi = π̇i/(1− πi ).
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Improving the efficiency of PS estimator

We want to improve the efficiency of the PS estimator in (12) by
incorporating the auxiliary variable xi observed throughout the sample.

One can consider a class of estimating equations of the form

n∑
i=1

δi
1

π̂i
{U(θ; xi , yi )− b(θ; xi )}+

n∑
i=1

b(θ; xi ) = 0 (20)

where b(θ; xi ) is to be determined.

We can write the solution to (20) as θ̂b as it depends on the
particular choice of b(θ; x) function.

Note that the solution θ̂b is consistent regardless of the choice of
b(θ; xi ).

We want to find an optimal choice b∗(θ; xi ) which minimizes the
variance of θ̂b.
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Theorem 5.1 (Robins et al., 1994)

Theorem

Assume that the probability Pr (δ = 1 | x , y) = π(x) does not depend on
the value of y . Let θ̂b be the solution to (20) for given b(θ; xi ). Under
some regularity conditions, θ̂b is consistent and its asymptotic variance
satisfies

V
(
θ̂b

)
≥ n−1τ−1

[
V {E (U | X )}+ E

{
1

π(x)
V (U | X )

}]
(τ−1)′, (21)

where τ = E (∂U/∂θ′) and the equality holds when
b∗(θ; xi ) = E {U(θ; xi , yi ) | xi}.
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Example 5.4

Consider the sample from a linear regression model

yi = x′iβ + ei (22)

where ei are independent with E (ei | xi ) = 0. Assume that xi are
available from the full sample and yi are observed only when δi = 1.
The response propensity model follows from the logistic regression
model with logit(πi ) = x′iφ. We are interested in estimating
θ = E (Y ) from the partially observed data.
To construct the optimal estimator that achieves the minimum
variance in (21), we can use Ui (θ) = yi − θ and b∗i (θ) = x′iβ − θ.

Thus, the optimal estimator using b̂∗i (θ) = x′i β̂ − θ in (20) is given by

θ̂opt(β̂) =
1

n

n∑
i=1

δi
π̂i
yi +

1

n

(
n∑

i=1

xi −
n∑

i=1

δi
π̂i
xi

)′
β̂ (23)

where β̂ is any estimator of β satisfying
√
n(β̂ − β) = Op(1), where

Xn = Op(1) denotes that Xn is bounded in probability.
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Example 5.4 (Cont’d)

Note that the choice of β̂ does not play any leading role in the
asymptotic variance of θ̂opt(β̂). This is because

θ̂opt(β̂) ∼= θ̂opt(β0) + E

{
∂

∂β
θ̂opt(β0)

}(
β̂ − β0

)
(24)

and, under the correct response model,

E

{
∂

∂β
θ̂opt(β0)

}
= E

{
1

n

(
n∑

i=1

xi −
n∑

i=1

δi
π̂i
xi

)}
∼= 0

and so the second term of (24) becomes negligible. Furthermore, it
can be shown that the choice of φ̂ in π̂i = πi (φ̂) does not matter as
long as the regression model holds.
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§5.4 Optimal estimation
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Motivation

In Example 5.4, optimal estimator using auxiliary information is
considered, under the (outcome) regression model (22).

We now want to find the optimal estimator (using auxiliary
information) without relying on the outcome regression model.

Note that θ̂PSA = n−1
∑n

i=1 δiyi/π̂i applied to yi = xi does not
necessarily lead to x̄n = n−1

∑n
i=1 xi .

That is, we have two estimators of E (X ), ˆ̄xPSA and x̄n.

How to incorporate the extra information without relying on the
regression model ?

More generally, suppose that we have over-identified parameters (i.e.
number of estimating equations > number of parameters). How to
obtain a best estimator ?
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GMM (Generalized method of moment) estimation

θ: p-dimensional parameter

U(θ;Z ) = 0: a system of estimating equations of size m > p.

No unique solution exists.

Let W (θ) be a m ×m symmetric matrix. Define

QW (θ) = {U(θ;Z )}′W (θ)U(θ;Z ).

Note that θ̂W = arg minQW (θ) is now uniquely determined under
some regularity conditions. Note that the solution θ̂W is obtained by
solving

UW (θ) ≡ {U̇(θ;Z )}′W (θ)U(θ;Z ) = 0

where U̇(θ; z) = ∂U(θ; z)/∂θ′.
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GMM estimation (Cont’d)

Thus, the asymptotic variance of θ̂W is

V
(
θ̂W

)
∼=

{
E

(
∂

∂θ′
UW (θ)

)}−1
V {UW (θ)}

{
E

(
∂

∂θ′
UW (θ)

)′}−1
=

{
τ ′W τ

}−1
τ ′WV (U)W τ

{
τ ′W τ

}−1
,

where W = W (θ) and τ = E (∂U/∂θ′). The asymptotic variance is
minimized at

W ∗ = {V (U)}−1 .

Thus, the GMM estimator of θ is obtained by minimizing

Q∗(θ) = {U(θ;Z )}′ {Var(U(θ;Z ))}−1 U(θ;Z ).

The asymptotic variance of the GMM estimator is
[
τ ′{V (U)}−1τ

]−1
.
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Lemma 5.2

Lemma

Assume that X̂1 and X̂2 are two unbiased estimators of µx and Ŷ is an
unbiased estimator of µy . Let

Q =

 X̂1 − µx
X̂2 − µx
Ŷ − µy

′ V (X̂1) C (X̂1, X̂2) C (X̂1, Ŷ )

C (X̂1, X̂2) V (X̂2) C (X̂2, Ŷ )

C (X̂1, Ŷ ) C (X̂2, Ŷ ) V (Ŷ )

−1 X̂1 − µx
X̂2 − µx
Ŷ − µy

 .

(25)
The optimal estimator of (µx , µy ) that minimizes Q in (25) is

µ̂∗x = α∗X̂1 + (1− α∗) X̂2 (26)

and
µ̂∗y = Ŷ + B1

(
µ̂∗x − X̂1

)
+ B2

(
µ̂∗x − X̂2

)
(27)
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Lemma (Cont’d )

where

α∗ =
V (X̂2)− C (X̂1, X̂2)

V (X̂1) + V (X̂2)− 2C (X̂1, X̂2)

and (
B1

B2

)
=

(
V (X̂1) C (X̂1, X̂2)

C (X̂1, X̂2) V (X̂2)

)−1(
C (X̂1, Ŷ )

C (X̂2, Ŷ )

)
.

Ch 5 43 / 70



Proof.

Using the inverse of the partitioned matrix, we can write

Q = Q1 + Q2

where

Q1 =

(
X̂1 − µx
X̂2 − µx

)′(
V (X̂1) C (X̂1, X̂2)

C (X̂1, X̂2) V (X̂2)

)−1(
X̂1 − µx
X̂2 − µx

)
,

Q2 =
{
Ŷ − E (Ŷ | X̂1, X̂2)

}′
V−1ee

{
Ŷ − E (Ŷ | X̂1, X̂2)

}
,

E (Ŷ | X̂1, X̂2) = µy + B1(X̂1 − µx) + B2(X̂2 − µx),

and Vee = V (Ŷ )− (B1,B2){V (X̂1, X̂2)}−1(B1,B2)′.
Minimizing Q1 with respect to µx gives µ̂∗x in (26) and minimizing Q2 with
respect to µy for given µ̂∗x gives µ̂∗y in (27).
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Remark

The optimal estimator of µy takes the form of the regression
estimator with µ̂∗x as the control.

Using (26), we can also express

µ̂∗y = Ŷ − C
(
Ŷ , X̂2 − X̂1

){
V
(
X̂2 − X̂1

)}−1
(X̂2 − X̂1).
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Remark

Under the missing data setup where xi is always observed and yi is
subject to missingness, if we know πi , then we can use
X̂1 = n−1

∑n
i=1 xi = X̂n, X̂2 = n−1

∑n
i=1 δixi/πi = X̂W , and

Ŷ = n−1
∑n

i=1 δiyi/πi = ŶW .

In this case, we can obtain µ̂∗x = X̄1 and the optimal estimator of µy
reduces to

µ̂∗y = Ŷ + C
(
Ŷ , X̂2 − X̂1

){
V
(
X̂2 − X̂1

)}−1
(X̂1 − X̂2)

= ŶW + (X̂n − X̂W )′B∗

where

B∗ = E

(
n∑

i=1

1− πi
πi

xix
′
i

)−1
E

(
n∑

i=1

1− πi
πi

xiyi

)
.
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Optimal PS estimation

GMM approach

Let θ = (µx , µy ). We have three estimators for two parameters.

Find θ that minimizes

QPS(θ) =

 x̄n − µx
θ̂x ,PS − µx
θ̂y ,PS − µy

′V̂

 x̄n
θ̂x ,PS
θ̂y ,PS


−1 x̄n − µx

θ̂x ,PS − µx
θ̂y ,PS − µy


(28)

where θ̂PS = θ̂PS(φ̂) is the propensity score estimator using π̂i .

Computation for V̂ is somewhat cumbersome.
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Optimal PS estimation (Cont’d)

Alternative GLS (or GMM) approach

Find (θ, φ) that minimizes
x̄n − µx

θ̂x ,PS(φ)− µx
θ̂y ,PS(φ)− µy

S(φ)


′V̂


x̄n

θ̂x ,PS(φ)

θ̂y ,PS(φ)
S(φ)



−1

x̄n − µx
θ̂x ,PS(φ)− µx
θ̂y ,PS(φ)− µy
S(φ)

 .

Computation for V̂ is easier since we can treat φ as if known.

Let Q∗(θ, φ) be the above objective function. It can be shown that
Q∗(θ, φ̂) = QPS(θ) in (28) and so minimizing Q∗(θ, φ̂) is equivalent
to minimizing QPS(θ).
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Optimal PS estimation (Cont’d)

Justification for the equivalence

May write

Q∗(θ, φ) =

(
ÛPS(θ, φ)

S(φ)

)′(
V11 V12

V21 V22

)−1(
ÛPS(θ, φ)
S(φ)

)
= Q1(θ | φ) + Q2(φ)

where

Q1(θ | φ) =
(
ÛPS − V12V

−1
22 S

)′ {
V
(
UPS | S⊥

)}−1 (
ÛPS − V12V

−1
22 S

)
Q2(φ) = S(φ)′

{
V̂ (S)

}−1
S(φ)

For the MLE φ̂, we have Q2(φ̂) = 0 and Q1(θ | φ̂) = QPS(θ).
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Example 5.5

Response model

πi (φ
∗) =

exp(φ∗0 + φ∗1xi )

1 + exp(φ∗0 + φ∗1xi )

Three direct PS estimators of (1, µx , µy ):

(θ̂1,PS , θ̂x ,PS , θ̂y ,PS) = n−1
n∑

i=1

δi π̂
−1
i (1, xi , yi ) .

x̄n = n−1
∑n

i=1 xi available.

What is the optimal estimator of µy ?
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Example 5.5 (Cont’d)

Minimize
x̄n − µx

θ̂1,PS(φ)− 1

θ̂x ,PS(φ)− µx
θ̂y ,PS(φ)− µy

S(φ)


′V̂


x̄n

θ̂1,PS(φ)

θ̂x ,PS(φ)

θ̂y ,PS(φ)
S(φ)




−1
x̄n − µx
θ̂1,PS(φ)− 1

θ̂x ,PS(φ)− µx
θ̂y ,PS(φ)− µy
S(φ)


with respect to (µx , µy , φ), where

S(φ) =
n∑

i=1

(
δi

πi (φ)
− 1

)
hi (φ) = 0

with hi (φ) = πi (φ)(1, xi )
′.
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Example 5.5 (Cont’d)

Equivalently, minimize
θ̂y ,PS(φ)− µy
θ̂1,PS(φ)− 1

θ̂x ,PS(φ)− x̄n
S(φ)


′V̂


θ̂y ,PS(φ)

θ̂1,PS(φ)

θ̂x ,PS(φ)− x̄n
S(φ)



−1

θ̂y ,PS(φ)− µy
θ̂1,PS(φ)− 1

θ̂x ,PS(φ)− x̄n
S(φ)


with respect to (µy , φ), since the optimal estimator of θx is x̄n.
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Example 5.5 (Cont’d)

The solution can be written as

µ̂y ,opt = θ̂y ,PS +
(

1− θ̂1,PS
)
B̂0 +

(
x̄n − θ̂1,PS

)
B̂1 +

{
0− S(φ̂)

}
Ĉ

where B̂0

B̂1

Ĉ

 =


n∑

i=1

δibi

 1
xi
hi

 1
xi
hi

′
−1

n∑
i=1

δibi

 1
xi
hi

 yi

and bi = π̂−2i (1− π̂i ).

Note that the last term {0− S(φ̂)}Ĉ , which is equal to zero, does
not contribute to the point estimation. But, it is used for variance
estimation.
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Example 5.5 (Cont’d)

That is, for variance estimation, we simply express

µ̂y ,opt = n−1
n∑

i=1

η̂i

where

η̂i = B̂0 + xi B̂1 + h′i Ĉ +
δi
π̂i

(
yi − B̂0 − xi B̂1 − h′i Ĉ

)
and apply the standard variance formula to η̂i .
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Example 5.5 (Cont’d)

The optimal estimator is linear in y . That is, we can write

µ̂y ,opt =
1

n

n∑
i=1

δi
π̂i
giyi =

∑
δi=1

wiyi

where gi satisfies

n∑
i=1

δi
π̂i
gi (1, xi ,h

′
i ) =

n∑
i=1

(1, xi ,h
′
i ).

Thus, it is doubly robust under the outcome model
E (y | x) = β0 + β1x in the sense that µ̂y ,opt is unbiased when either
the response model or the outcome model holds.
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§5.5 Doubly robust method
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5. Doubly robust method

Two models

Response Probability (RP) model: model about δ

Pr(δ = 1 | x, y) = π(x;φ)

Outcome Regression (OR) model: model about y

E (y | x) = m(xi ;β)

Doubly robust (DR) estimation aims to achieve (asymptotic)
unbiasedness under either RP model or OR model.

For estimation of θ = E (Y ), a doubly robust estimator is

θ̂DR =
1

n

n∑
i=1

{
ŷi +

δi
π̂i

(yi − ŷi )

}

where ŷi = m(xi ; β̂) and π̂i = π(xi ; φ̂).
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5. Doubly robust method

Note that

θ̂DR − θ̂n = n−1
n∑

i=1

(
δi
π̂i
− 1

)
(yi − ŷi ) . (29)

Taking an expectation of the above, we note that the first term has
approximate zero expectation if the RP model is true. The second
term has approximate zero expectation if the OR model is true. Thus,
θ̂DR is approximately unbiased when either RP model or OR model is
true.

When both models are true, then the choice of β̂ and φ̂ does not
make any difference in the asymptotic sense. Robins et al (1994)
called the property local efficiency of the DR estimator.
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5. Doubly robust method

Kim and Riddles (2012) considered an augmented propensity model
of the form

π̂∗i = π∗i (φ̂, λ̂) =
πi (φ̂)

πi (φ̂) + {1− πi (φ̂)} exp(λ̂0 + λ̂1m̂i )
, (30)

where πi (φ̂) is the estimated response probability under the response
probability model and (λ̂0, λ̂1) satisfies

n∑
i=1

δi

π∗i (φ̂, λ̂)
(1, m̂i ) =

n∑
i=1

(1, m̂i ) (31)

with m̂i = m(xi ; β̂).
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5. Doubly robust method

The augmented PS estimator, defined by θ̂∗PS = n−1
∑n

i=1 δiyi/π̂
∗
i ,

based on the augmented propensity in (30) satisfies, under the
assumed response probability model,

θ̂∗PS
∼=

1

n

n∑
i=1

{
b̂0 + b̂1m̂i +

δi
π̂i

(
yi − b̂0 − b̂1m̂i

)}
, (32)

where(
b̂0
b̂1

)
=

{
n∑

i=1

δi

(
1

π̂i
− 1

)(
1
m̂i

)(
1
m̂i

)′}−1 n∑
i=1

δi

(
1

π̂i
− 1

)(
1
m̂i

)
yi .
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5. Doubly robust method

The augmented PS estimator using

π̂∗i = π∗i (φ̂, λ̂) =
π̂i

π̂i + {1− π̂i} exp(λ̂0/π̂i + λ̂1xi/π̂i )
,

with (λ̂0, λ̂1) satisfying

n∑
i=1

δi

π∗i (φ̂, λ̂)
(1, xi ) =

n∑
i=1

(1, xi )

is asymptotically equivalent to the optimal regression PS estimator
discussed in Example 5.5.
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6. Nonparametric method

Motivation

So far, we have assumed a parametric model for
π(x) = Pr(δ = 1 | x).

Using the nonparametric regression technique, we can use a
nonparametric estimator of π(x) given by a nonparametric regression
estimator of π(x) = E (δ | x) can be obtained by

π̂h(x) =

∑n
i=1 δiKh(xi , x)∑n
i=1 Kh(xi , x)

, (33)

where Kh is the kernel function which satisfies certain regularity
conditions and h is the bandwidth.

Once a nonparametric estimator of π(x) is obtained, the
nonparametric PS estimator θ̂NPS of θ0 = E (Y ) is given by

θ̂NPS =
1

n

n∑
i=1

δi
π̂h(xi )

yi . (34)
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6. Nonparametric method

Theorem 5.2

Under some regularity conditions, we have

θ̂NPS =
1

n

n∑
i=1

[
m(xi ) +

δi
π(xi )

{yi −m(xi )}
]

+ op(n−1/2), (35)

where m(x) = E (Y | x) and π(x) = P(δ = 1 | x). Furthermore, we have

√
n
(
θ̂NPS − θ

)
→ N

(
0, σ21

)
,

where σ21 = V {m (X )}+ E
[
{π (X )}−1V (Y | X )

]
.

Originally proved by Hirano et al. (2003).
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6. Nonparametric method

Remark

Unlike the usual asymptotic for nonparametric regression,√
n-consistency is established.

The nonparametric PS estimator achieves the lower bound of the
variance that was discussed in Theorem 5.1.

Instead of nonparametric PS method, we can use the same Kernel
regression technique to obtain a nonparametric imputation estimator
given by

θ̂NPI =
1

n

n∑
i=1

{δiyi + (1− δi )m̂h(xi )} (36)

where

m̂h(x) =

∑n
i=1 δiKh(xi , x)yi∑n
i=1 δiKh(xi , x)

.

Cheng (1994) proves that θ̂NPI has the same asymptotic variance in
Theorem 5.2.
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7. Application to longitudinal missing

Basic Setup

Xi is always observed and remains unchanged for t = 0, 1, . . . ,T .

Yit is the response for subject i at time t.

δit : The response indicator for subject i at time t.

Assuming no missing in the baseline year, Y0 can be absorbed into X .

Monotone missing pattern

δit = 0⇒ δi ,t+1 = 0, ∀t = 1, . . . ,T − 1.

Li ,t = (X ′i ,Yi1, . . . ,Yi ,t)
′ : Measurement up to t.

Parameter of interest θ is estimated by solving

n∑
i=1

U(θ; Li ,T ) = 0

for θ, under complete response.
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Application to longitudinal missing

Missing mechanism (under monotone missing pattern)

Missing completely at random (MCAR) :

P(δit=1|δi ,t−1 = 1, Li ,T ) = P(δit=1|δi ,t−1 = 1).

Covariate-dependent missing (CDM) :

P(δit = 1|δi ,t−1 = 1, Li ,T ) = P(δit = 1|δi ,t−1 = 1,Xi ).

Missing at random (MAR) :

P(δit = 1|δi ,t−1 = 1, Li ,T ) = P(δit = 1|δi ,t−1 = 1, Li ,t−1).

Missing not at random (MNAR) : Missing at random does not
hold.
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Application to longitudinal missing

Motivation

Panel attrition is frequently encountered in panel surveys, while
classical methods often assume covariate-dependent missing, which
can be unrealistic. We want to develop a PS method under MAR.

Want to make full use of available information.
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Application to longitudinal missing

Idea

Under MAR, in the longitudinal data case, we would consider the
conditional probabilities:

pit := P(δit = 1|δi ,t−1 = 1, Li ,t−1), t = 1, . . . ,T .

Then

πit =
t∏

j=1

pij .

πt then can be modeled through modeling pt with pt(Lt−1;φt).

Once we obtain π̂iT =
∏T

t=1 p̂it is obtained, we can use

n∑
i=1

δiT
π̂iT

U(θ; Li ,T ) = 0

to obtain a consistent estimator of θ.
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Application to longitudinal missing

Score Function for Longitudinal Data Under parametric models for pt ’s,
the partial likelihood for φ1, . . . , φT is

L(φ1, . . . , φT ) =
n∏

i=1

T∏
t=1

[
p
δi,t
it (1− pit)

1−δi,t
]δi,t−1

,

and the corresponding score function is (S1(φ1), . . . ,ST (φT )), where

St(φt) =
n∑

i=1

δi ,t−1 {δit − pit(φt)}qit(φt) = 0

where qit(φt) = ∂logit{pit(φt)}/∂φt . Under logistic regression model such
that pt = 1/{1 + exp(−φ′tLt−1)}, we have qit(φt) = Lt−1.
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Application to longitudinal missing

Remark

Zhou and Kim (2012) proposed an optimal estimator of µt = E (Yt)
incorporating all available information.

The idea can be extended to non-monotone missing data by
re-defining

πit = P (δi1 = · · · = δit = 1 | Lit) =
t∏

j=1

pij

where
pit := P(δit = 1|δi1 = · · · = δi ,t−1 = 1, Li ,t−1).

The score equation for φt in pit = p(Li ,t−1;φt) is then

St(φt) =
n∑

i=1

δ∗i ,t−1 {δit − pit(φt)}qit(φt) = 0

where δ∗i ,t−1 =
∏t−1

j=1 δij and qit(φt) = ∂logit{pit(φt)}/∂φt .
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