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Introduction
Basic setup

Y: a vector of random variables with distribution F (y; θ).

y1, · · · , yn are n independent realizations of Y.

We are interested in estimating ψ which is implicitly defined by
E{U(ψ;Y)} = 0.

Under complete observation, a consistent estimator ψ̂n of ψ can be
obtained by solving estimating equation for ψ:

n∑
i=1

U(ψ; yi ) = 0.

A special case of estimating function is the score function. In this
case, ψ = θ.

Sandwich variance estimator is often used to estimate the variance of
ψ̂n:

V̂ (ψ̂n) = τ̂−1u V̂ (U)τ̂−1
′

u

where τu = E{∂U(ψ; y)/∂ψ′}.
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1. Introduction
Missing data setup

Suppose that yi is not fully observed.

yi = (yobs,i , ymis,i ): (observed, missing) part of yi

δi : response indicator functions for yi .

Under the existence of missing data, we can use the following
estimators:

ψ̂: solution to
n∑

i=1

E {U (ψ; yi ) | yobs,i , δi} = 0. (1)

The equation in (1) is often called expected estimating equation.
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1. Introduction

Motivation (for imputation)

Computing the conditional expectation in (1) can be a challenging
problem.

1 The conditional expectation depends on unknown parameter values.
That is,

E {U (ψ; yi ) | yobs,i , δi} = E {U (ψ; yi ) | yobs,i , δi ; θ, φ} ,

where θ is the parameter in f (y; θ) and φ is the parameter in
p(δ | y;φ).

2 Even if we know η = (θ, φ), computing the conditional expectation is
numerically difficult.
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1. Introduction
Imputation

Imputation: Monte Carlo approximation of the conditional
expectation (given the observed data).

E {U (ψ; yi ) | yobs,i , δi} ∼=
1

m

m∑
j=1

U
(
ψ; yobs,i , y

∗(j)
mis,i

)

1 Bayesian approach: generate y∗mis,i from

f (ymis,i | yobs , δ) =

∫
f (ymis,i | yobs , δ; η) p(η | yobs , δ)dη

2 Frequentist approach: generate y∗mis,i from f (ymis,i | yobs,i , δ; η̂) , where
η̂ is a consistent estimator.
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Example 4.1

Basic Setup
Let (x , y)′ be a vector of bivariate random variables. Assume that xi
are always observed and yi are subject to missingness in the sample,
and the probability of missingness does not depend on the value of yi .
In this case, an imputed estimator of θ = E (Y ) based on single
imputation can be computed by

θ̂I =
1

n

n∑
i=1

{δiyi + (1− δi ) y∗i } (2)

where y∗i is an imputed value for yi .

Imputation model
yi ∼ N

(
β0 + β1xi , σ

2
e

)
,

for some (β0, β1, σ
2
e ).
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Example 4.1 (Cont’d)

Deterministic imputation: Use y∗i = β̂0 + β̂1xi where(
β̂0, β̂1

)
=
(
ȳr − β̂1x̄r , S−1xxrSxyr

)
.

Note that
E
(
θ̂I − θ

)
= 0

and

V
(
θ̂I

)
=

1

n
σ2y +

(
1

r
− 1

n

)
σ2e =

σ2y
r

{
1−

(
1− r

n

)
ρ2
}
.

Stochastic imputation: Use y∗i = β̂0 + β̂1xi + e∗i , where e∗i ∼ (0, σ̂2e ).
The imputed estimator under stochastic imputation satisfies

V
(
θ̂I

)
=

1

n
σ2y +

(
1

r
− 1

n

)
σ2e +

n − r

n2
σ2e

where the third term represents the additional variance due to
stochastic imputation.
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Remark

Deterministic imputation is unbiased for the estimating the mean but
may not be unbiased for estimating the proportion. For example, if
θ = Pr(Y < c) = E{I (Y < c)}, the imputed estimator

θ̂ = n−1
n∑

i=1

{δi I (yi < c) + (1− δi )I (y∗i < c)}

is unbiased if E{I (Y < c)} = E{I (Y ∗ < c)}, which holds only when
the marginal distribution of y∗ is the same as the marginal
distribution of y . In general, under deterministic imputation, we have
E (y) = E (y∗) but V (y) > V (y∗). For regression imputation,
V (y∗) = σ2y (1− ρ2) < σ2y = V (y).

Imputation increases the variance (of the imputed estimator) because
the imputed values are positively correlated.

Variance estimation is complicated because of the correlation between
the imputed values.
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§2 Basic Theory for Imputation

Lemma 4.1

Let θ̂ be the solution to Û (θ) = 0, where Û(θ) is a function of complete
observations y1, · · · , yn and parameter θ. Let θ0 be the solution to

E
{
Û (θ)

}
= 0. Then, under some regularity conditions,

θ̂ − θ0 ∼= −
[
E
{
U̇(θ0)

}]−1
Û (θ0) ,

where U̇(θ) = ∂Û(θ)/∂θ′ and notation An
∼= Bn means that

B−1n An = 1 + Rn for some Rn which converges to zero in probability.
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Remark (about Lemma 4.1)

Its proof is based on Taylor linearization:

Û(θ̂) ∼= Û(θ0) + U̇(θ0)
(
θ̂ − θ0

)
∼= Û(θ0) + E{U̇(θ0)}

(
θ̂ − θ0

)
,

where the second (approximate) equality follows by

U̇(θ0) = E{U̇(θ0)}+ op(1)

and θ̂ = θ0 + op(1).

Need to assume that E
{
U̇(θ0)

}
is nonsingular.

Also, we need conditions for θ̂
p→ θ0.

Lemma 4.1 can be used to establish the asymptotic normality of θ̂.
(Use Slutsky Theorem).
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2. Basic Theory for Imputation

Basic Setup (for Case 1: ψ = η)

y = (y1, · · · , yn) ∼ f (y; θ)

δ = (δ1, · · · , δn) ∼ P(δ|y;φ)

y = (yobs , ymis): (observed, missing) part of y.

y
∗(1)
mis , · · · , y

∗(m)
mis : m imputed values of ymis generated from

f (ymis | yobs, δ; η̂p) =
f (y; θ̂p)P(δ | y; φ̂p)∫

f (y; θ̂p)P(δ | y; φ̂p)dµ(ymis)
,

where η̂p = (θ̂p, φ̂p) is a preliminary estimator of η = (θ, φ).

Using m imputed values, imputed score function is computed as

S̄∗imp,m (η | η̂p) ≡ m−1
m∑
j=1

Scom
(
η; yobs , y

∗(j)
mis , δ

)
where Scom(η; y) is the score function of η = (θ, φ) under complete response.
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2. Basic Theory for Imputation

Lemma 4.2 (Asymptotic results for m =∞)

Assume that η̂p converges in probability to η. Let η̂∗I ,m be the solution to

1

m

m∑
j=1

Scom
(
η; yobs , y

∗(j)
mis , δ

)
= 0,

where y
∗(1)
mis , · · · , y

∗(m)
mis are the imputed values generated from

f (ymis | yobs, δ; η̂p). Then, under some regularity conditions, for m→∞,

η̂∗imp,∞
∼= η̂MLE + Jmis (η̂p − η̂MLE) (3)

and
V
(
η̂∗imp,∞

) .
= I−1obs + Jmis {V (η̂p)− V (η̂MLE)}J ′mis ,

where Jmis = I−1comImis is the fraction of missing information.
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Remark

Equation (3) means that

η̂∗imp,∞ = (I − Jmis) η̂MLE + Jmisη̂p. (4)

That is, η̂∗imp,∞ is a convex combination of η̂MLE and η̂p.

Note that η̂∗imp,∞ is one-step EM update with initial estimate η̂p. Let

η̂(t) be the t-th EM update of η that is computed by solving

S̄
(
η | η̂(t−1)

)
= 0

with η̂(0) = η̂p. Equation (4) implies that

η̂(t) = (I − Jmis) η̂MLE + Jmisη̂
(t−1).

Thus, we can obtain

η̂(t) = η̂MLE + (Jmis)
t−1
(
η̂(0) − η̂MLE

)
,

which justifies limt→∞ η̂
(t) = η̂MLE .
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Proof for Lemma 4.2
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Wang and Robins (1998)

Theorem 4.1 (Asymptotic results for m <∞)

Let η̂p be a preliminary
√
n-consistent estimator of η with variance Vp.

Under some regularity conditions, the solution η̂∗imp,m to

S̄∗m (η | η̂p) ≡ 1

m

m∑
j=1

Scom
(
η; yobs , y

∗(j)
mis , δ

)
= 0

has mean η0 and asymptotic variance equal to

V
(
η̂∗imp,m

) .
= I−1obs + Jmis

{
Vp − I−1obs

}
J ′mis + m−1I−1comImisI−1com (5)

where Jmis = I−1comImis.
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2. Basic Theory for Imputation

Remark

If we use η̂p = η̂MLE , then the asymptotic variance in (5) is

V
(
η̂∗imp,m

) .
= I−1obs + m−1I−1comImisI−1com.

In Bayesian imputation (or multiple imputation), the posterior values
of η are independently generated from η ∼ N(η̂MLE , I−1obs), which
implies that we can use Vp = I−1obs + m−1I−1obs. Thus, the asymptotic
variance in (5) for multiple imputation is

V
(
η̂∗imp,m

) .
= I−1obs + m−1JmisI−1obsJ

′
mis + m−1I−1comImisI−1com.

The second term is the additional price we pay when generating the
posterior values, rather than using η̂MLE directly.

Ch 4 17 / 79



Remark (about Theorem 4.1)

Variance term (5) has three components. Writing

η̂∗imp,m = η̂MLE +
(
η̂∗imp,∞ − η̂MLE

)
+
(
η̂∗imp,m − η̂∗imp,∞

)
,

we can establish that the three terms are independent and satisfies

V (η̂MLE ) = I−1obs

V
(
η̂∗imp,∞ − η̂MLE

)
= Jmis

{
Vp − I−1obs

}
J ′mis

V
(
η̂∗imp,m − η̂∗imp,∞

)
= m−1I−1comImisI−1com
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Sketched proof for Theorem 4.1

By Lemma 4.1 applied to S̄(η | η̂p) = 0, we have

η̂∗imp,∞ − η0 ∼= I−1comS̄(η | η̂p).

Similarly, we can write

η̂∗imp,m − η0 ∼= I−1comS̄
∗
m(η | η̂p).

Thus,

V
(
η̂∗imp,m − η̂∗imp,∞

)
= I−1comV

{
S̄∗m(η | η̂p)− S̄(η | η̂p)

}
I−1com

and

V
{
S̄∗m(η | η̂p)− S̄(η | η̂p)

}
=

1

m
V {Scom(η) | yobs, δ; η̂p}

=
1

m
V {Smis(η) | yobs, δ; η̂p}

=
1

m
E
{
Smis(η)⊗2 | yobs, δ; η̂p

}
∼=

1

m
E
{
Smis(η)⊗2 | yobs, δ; η

}
.
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2. Basic Theory for Imputation

Basic Setup (for Case 2: ψ 6= η)

Parameter ψ defined by E{U(ψ; y)} = 0.

Under complete response, a consistent estimator of ψ can be obtained
by solving U (ψ; y) = 0.

Assume that some part of y, denoted by ymis, is not observed and m

imputed values, say y
∗(1)
mis , · · · , y

∗(m)
mis , are generated from

f (ymis | yobs, δ; η̂MLE ), where η̂MLE is the MLE of η0.

The imputed estimating function using m imputed values is computed
as

Ū∗imp,m (ψ | η̂MLE ) =
1

m

m∑
j=1

U(ψ; y∗(j)), (6)

where y∗(j) = (yobs, y
∗(j)
mis ).

Let ψ̂∗imp,m be the solution to Ū∗imp,m (ψ | η̂MLE ) = 0. We are

interested in the asymptotic properties of ψ̂∗imp,m.
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Theorem 4.2

Theorem 4.2

Suppose that the parameter of interest ψ0 is estimated by solving
U (ψ) = 0 under complete response. Then, under some regularity
conditions, the solution to

E {U (ψ) | yobs, δ; η̂MLE} = 0 (7)

has mean ψ0 and the asymptotic variance τ−1Ωτ
′−1, where

τ = −E
{
∂U (ψ0) /∂ψ′

}
Ω = V

{
Ū (ψ0 | η0) + κSobs (η0)

}
and

κ = E {U (ψ0) Smis(η0)} I−1obs.
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Sketched Proof

Writing
Ū(ψ | η) ≡ E{U(ψ) | yobs , δ; η},

the solution to (7) can be treated as the solution to the joint
estimating equation

U (ψ, η) ≡
[
U1(ψ, η)
U2(η)

]
= 0,

where U1(ψ, η) = Ū (ψ | η) and U2(η) = Sobs (η).

We can apply the Taylor expansion to get(
ψ̂
η̂

)
∼=
(
ψ0

η0

)
−
(

B11 B12

B21 B22

)−1 [
U1(ψ0, η0)
U2(η0)

]
where (

B11 B12

B21 B22

)
=

[
E (∂U1/∂ψ

′) E (∂U1/∂η
′)

E (∂U2/∂ψ
′) E (∂U2/∂η

′)

]
.
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Sketched Proof (Cont’d)

Note that

B11 = E{∂U(ψ)/∂ψ′}
B21 = 0

B12 = E{U(ψ)Smis(η0)}
B22 = −Iobs

Thus,
ψ̂ ∼= ψ0 − B−111

{
U1(ψ0, η0)− B12B

−1
22 U2(η0)

}
.
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Alternative approach

Use Randles (1982) theorem: An estimator θ̂(β̂) is asymptotically
equivalent to θ̂(β) if

E

{
∂

∂β
θ̂(β)

}
= 0.

Thus, writing θ̂k(β) = θ̂(β) + kSobs(β), we have

1 θ̂(β̂) = θ̂k(β̂) holds for any k .

2 If we can find k = k∗ such that θ̂k∗(β̂) satisfies Randles’ condition,
then we can safely ignore the effect of the sampling variability of β̂
and assume that θ̂k∗(β̂) ∼= θ̂k∗(β).
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Example 4.2

Under the setup of Example 4.1, we are interested in obtaining the
asymptotic variance of the regression imputation estimator

θ̂Id =
1

n

n∑
i=1

{
δiyi + (1− δi )

(
β̂0 + β̂1xi

)}
,

where β̂ =
(
β̂0, β̂1

)
is the solution to

Sobs(β) =
1

σ2e

n∑
i=1

δi (yi − β0 − β1xi )(1, xi )
′.

The imputed estimator is the solution to

E
{
U(θ) | yobs, δ; β̂

}
= 0

where

U(θ) =
n∑

i=1

(yi − θ) /σ2e .
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Example 4.2 (Cont’d)

Since

E {U(θ) | yobs, δ;β} ≡ Ū(θ | β)

=
n∑

i=1

{δiyi + (1− δi ) (β0 + β1xi )− θ} /σ2e .

Thus, using the linearization formula in Theorem 4.2, we have

Ūl(θ | β) = Ū(θ | β) + (κ1, κ2)Sobs(β) (8)

where
(κ1, κ2)′ = I−1obsE {Smis(β)U(θ)} . (9)
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Example 4.2 (Cont’d)

In this example, we have(
κ0
κ1

)
=

[
E

{
n∑

i=1

δi (1, xi ) (1, xi )
′

}]−1
E

{
n∑

i=1

(1− δi ) (1, xi )
′

}
∼= E

{
(−1 + (n/r)(1− gx̄r ), (n/r)g)′

}
,

where g = (x̄n − x̄r )/
∑n

i=1 δi (xi − x̄r )2/r . Thus,

Ūl (θ | β)σ2e =
n∑

i=1

δi (yi − θ) +
n∑

i=1

(1− δi ) (β0 + β1xi − θ)

+
n∑

i=1

δi (yi − β0 − β1xi ) (κ0 + κ1xi ) .
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Example 4.2 (Cont’d)

Note that the solution to Ūl (θ | β) = 0 leads to

θ̂Id ,l =
1

n

n∑
i=1

{β0 + β1xi + δi (1 + κ0 + κ1xi ) (yi − β0 − β1xi )}

=
1

n

n∑
i=1

di ,

where 1 + κ0 + κ1xi = (n/r){1 + g(xi − x̄r )}.
Thus, θ̂Id is asymptotically equivalent to θ̂Id ,l , which is the sample

mean of di , the influence function of unit i to θ̂Id .

Under uniform response mechanism, 1 + κ0 + κ1xi ∼= n/r and the
asymptotic variance of θ̂l is equal to

1

n
β21σ

2
x +

1

r
σ2e =

1

n
σ2y +

(
1

r
− 1

n

)
σ2e
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Remark

Let X1, · · · ,Xn be IID sample from f (x ; θ0), θ0 ∈ Θ and we are
interested in estimating γ0 = γ(θ0), where γ(·) : Θ→ Rk . An
estimator γ̂ = γ̂n is called asymptotically linear if there exist a random
vector ψ(x) such that

√
n (γ̂n − γ0) =

1√
n

n∑
i=1

ψ(Xi ) + op(1) (10)

with Eθ0{ψ(X )} = 0 and Eθ0{ψ(X )ψ(X )′} is finite and non-singular.
Here, Zn = op(1) means that Zn converges to zero in probability.
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Remark

The function ψ(x) is referred to as an influence function. The phrase
influence function was used by Hampel (JASA, 1974) and is
motivated by the fact that to the first order ψ(x) is the influence of a
single observation on the estimator γ̂ = γ̂(X1, · · · ,Xn).

The asymptotic properties of an asymptotically linear estimator, γ̂n
can be summarized by considering only its influence function.

Since ψ(X ) has zero mean, the CLT tells us that

1√
n

n∑
i=1

ψ(Xi )
L→ N

[
0,Eθ0{ψ(X )ψ(X )′}

]
. (11)

Thus, combining (10) with (11) and applying Slutsky’s theorem, we
have √

n (γ̂n − γ0)
L→ N

[
0,Eθ0{ψ(X )ψ(X )′}

]
.
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§3 Variance estimation after imputation
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Deterministic Imputation

In Example 4.2, the imputed estimator can be written as θ̂Id(β̂). Note
that we can write the deterministic imputed estimator as

θ̂Id = n−1
n∑

i=1

ŷi (β̂),

where ŷi (β̂) = β̂0 + β̂1xi .

In general, the asymptotic variance of θ̂Id = θ̂(β̂) is different from the
asymptotic variance of θ̂(β)
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As in Example 4.2, if we can find di = di (β) such that

θ̂Id(β̂) = n−1
n∑

i=1

di (β̂) ∼= n−1
n∑

i=1

di (β),

then the asymptotic variance of θ̂Id is equal to the asymptotic
variance of d̄n = n−1

∑n
i=1 di (β).

Note that, if (xi , yi , δi ) are IID, then di = d(xi , yi , δi ) are also IID.
Thus, the variance of d̄n = n−1

∑n
i=1 di is unbiasedly estimated by

V̂ (d̄n) =
1

n

1

n − 1

n∑
i=1

(
di − d̄n

)2
. (12)

Unfortunately, we cannot compute V̂ (d̄n) in (12) since di = di (β) is a
function of unknown parameters. Thus, we use d̂i = di (β̂) in (12) to
get a consistent variance estimator of the imputed estimator.
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Stochastic Imputation

Instead of the deterministic imputation, suppose that a stochastic
imputation is used such that

θ̂I = n−1
n∑

i=1

{
δiyi + (1− δi )

(
β̂0 + β̂1xi + ê∗i

)}
,

where ê∗i are the additional noise terms in the stochastic imputation.
Often ê∗i are randomly selected from the empirical distribution of the
sample residuals in the respondents.

The variance of the imputed estimator can be decomposed into two
parts:

V
(
θ̂I

)
= V

(
θ̂Id

)
+ V

(
θ̂I − θ̂Id

)
(13)

where the first part is the deterministic part and the second part is
the additional variance due to stochastic imputation. The first part
can be estimated by the linearization method discussed above. The
second part is called the imputation variance.
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If we require the imputation mechanism to satisfy

n∑
i=1

(1− δi ) ê∗i = 0

then the imputation variance is equal to zero.

Often the variance of θ̂I − θ̂Id = n−1
∑n

i=1 (1− δi ) ê∗i can be
computed under the known imputation mechanism. For example, if
simple random sampling without replacement is used then

V
(
θ̂I − θ̂Id

)
= E

{
V
(
θ̂I | yobs , δ

)}
= n−2(1−m/r) (r − 1)−1

n∑
i=1

δi ê
2
i

where m = n − r .
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Imputed estimator for general parameters

We now discuss a general case of parameter estimation when the
parameter of interest ψ is estimated by the solution ψ̂n to

n∑
i=1

U(ψ; yi ) = 0 (14)

under complete response of y1, · · · , yn.
Under the existence of missing data, we can use the imputed
estimating equation

Ū∗m (ψ) ≡ m−1
n∑

i=1

m∑
j=1

U(ψ; y
∗(j)
i ) = 0, (15)

where y
∗(j)
i = (yi ,obs, y

∗(j)
i ,mis) and y

∗(j)
i ,mis are randomly generated from

the conditional distribution h (yi ,mis | yi ,obs, δi ; η̂p) where η̂p is
estimated by solving

Ûp (η) ≡
n∑

i=1

Up (η; yi ,obs) = 0. (16)
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To apply the linearization method, we first compute the conditional
expectation of U(ψ; yi ) given (yi ,obs, δi ) evaluated at η̂p. That is,
compute

Ū (ψ | η̂p) =
n∑

i=1

Ūi (ψ | η̂p) =
n∑

i=1

E {U(ψ; yi ) | yi ,obs, δi ; η̂p} . (17)

Let ψ̂R be the solution to Ū (ψ | η̂p) = 0. Using the linearization
technique, we have

Ū (ψ | η̂p) ∼= Ū (ψ | η0) + E

{
∂

∂η′
Ū (ψ | η0)

}
(η̂p − η0) (18)

and

0 = Ûp (η̂p) = Ûp (η0) + E

{
∂

∂η′
Ûp (η0)

}
(η̂p − η0) . (19)
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Thus, combining (18) and (19), we have

Ū (ψ | η̂p) ∼= Ū (ψ | η0) + κ(ψ)Ûp (η0) (20)

where

κ(ψ) = −E
{
∂

∂η′
Ū (ψ | η0)

}[
E

{
∂

∂η′
Ûp (η0)

}]−1
.

Thus, writing

Ūl (ψ | η0) =
n∑

i=1

{
Ūi (ψ | η0) + κ(ψ)Ûp (η0; yi ,obs)

}
=

n∑
i=1

qi (ψ | η0) ,

and qi (ψ | η0) = Ūi (ψ | η0) + κ(ψ)Ûp (η0; yi ,obs), the variance of
Ū (ψ | η̂p) is asymptotically equal to the variance of Ūl (ψ | η0).
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Thus, the sandwich-type variance estimator for ψ̂R is

V̂
(
ψ̂R

)
= τ̂−1q Ω̂q τ̂

−1′
q (21)

where

τ̂q = n−1
n∑

i=1

q̇i

(
ψ̂R | η̂p

)
Ω̂q = n−1 (n − 1)−1

n∑
i=1

(q̂i − q̄n)⊗2 ,

q̇i (ψ | η) = ∂qi (ψ | η) /∂ψ, q̄n = n−1
∑n

i=1 q̂i , and q̂i = qi (ψ̂R | η̂p).
Note that

τ̂q = n−1
n∑

i=1

q̇i

(
ψ̂R | η̂p

)
= n−1

n∑
i=1

E
{
U̇(ψ̂R ; yi ) | yi ,obs, δi ; η̂p

}
because η̂p is the solution to (16).
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Example 4.3

Assume that the original sample is decomposed into G disjoint groups
(often called imputation cells) and the sample observations are IID
within the same cell. That is,

yi | i ∈ Sg
i .i .d .∼

(
µg , σ

2
g

)
(22)

where Sg is the set of sample indices in cell g . Assume that ng
sample elements in cell g and rg elements are observed in the cell.

For deterministic imputation, let µ̂g = r−1g

∑
i∈Sg δiyi be the g -th cell

mean of y among the respondents. The (deterministically) imputed
estimator of θ = E (Y ) is, under MAR,

θ̂Id = n−1
G∑

g=1

∑
i∈Sg

{δiyi + (1− δi )µ̂g} = n−1
G∑

g=1

ng µ̂g . (23)

Ch 4 40 / 79



Example 4.3 (Cont’d)

Using the linearization technique in (20), the imputed estimator can
be expressed as

θ̂Id ∼= n−1
G∑

g=1

∑
i∈Sg

{
µg +

ng
rg
δi (yi − µg )

}
(24)

and the plug-in variance estimator can be expressed as

V̂ (θ̂Id) =
1

n

1

n − 1

n∑
i=1

(
d̂i − d̄n

)2
(25)

where d̂i = µ̂g + (ng/rg )δi (yi − µ̂g ) and d̄n = n−1
∑n

i=1 d̂i .
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Example 4.3 (Cont’d)

If a stochastic imputation is used where an imputed value is randomly
selected from the set of respondents in the same cell, then we can
write

θ̂Is = n−1
G∑

g=1

∑
i∈Sg

{δiyi + (1− δi )y∗i } . (26)

Writing θ̂Is = θ̂Id + n−1
∑G

g=1

∑
i∈Sg (1− δi ) (y∗i − µ̂g ) , the variance

of the second term can be estimated by
n−2

∑G
g=1

∑
i∈Sg (1− δi ) (y∗i − µ̂g )2 if the imputed values are

generated independently, conditional on the respondents.
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§4.4 Replication variance estimation
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Replication variance estimation (under complete response)

Let θ̂n be the complete-sample estimator of θ. The replication variance
estimator of θ̂n takes the form of

V̂rep(θ̂n) =
L∑

k=1

ck

(
θ̂
(k)
n − θ̂n

)2
(27)

where L is the number of replicates, ck is the replication factor associated

with replication k, and θ̂
(k)
n is the k-th replicate of θ̂n. If θ̂n =

∑n
i=1 yi/n,

then we can write θ̂
(k)
n =

∑n
i=1 w

(k)
i yi for some replication weights

w
(k)
1 ,w

(k)
2 , · · · ,w (k)

n .
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Replication variance estimation (under complete response)

For example, in the jackknife method, we have L = n,
ck = (n − 1)/n, and

w
(k)
i =

{
(n − 1)−1 if i 6= k
0 if i = k.

If we use the above jackknife method to θ̂n =
∑n

i=1 yi/n, the
resulting jackknife estimator in (27) is algebraically equivalent to
n−1 (n − 1)−1

∑n
i=1(yi − ȳn)2.
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Replication variance estimation (under complete response)

Under some regularity conditions, for θ̂n = g(ȳn), the replication
variance estimator of θ̂n, defined by

V̂rep

(
θ̂n

)
=

L∑
k=1

ck

(
θ̂
(k)
n − θ̂n

)2
, (28)

where θ̂
(k)
n = g(ȳ

(k)
n ), satisfies

V̂rep

(
θ̂n

)
∼=
{
g ′(ȳn)

}2
V̂rep(ȳn).

Thus, the replication variance estimator (28) is asymptotically
equivalent to the linearized variance estimator.
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Remark

If the parameter of interest, denoted by ψ, is estimated by ψ̂ which is
obtained by solving an estimating equation

∑n
i=1 U(ψ; yi ) = 0, then a

consistent variance estimator can be obtained by the sandwich
formula: The complete-sample variance estimator of ψ̂ is

V̂
(
ψ̂
)

= τ̂−1u Ω̂u τ̂
−1′
u (29)

where

τ̂u = n−1
n∑

i=1

U̇
(
ψ̂; yi

)
Ω̂u = n−1 (n − 1)−1

n∑
i=1

(ûi − ūn)⊗2 ,

U̇ (ψ; y) = ∂U (ψ; y) /∂ψ, ūn = n−1
∑n

i=1 ûi , and ûi = U(ψ̂; yi ).
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If we want to use the replication method of the form (27), we can
construct the replication variance estimator of ψ̂ by

V̂rep(ψ̂) =
L∑

k=1

ck

(
ψ̂(k) − ψ̂

)2
(30)

where ψ̂(k) is computed by

Û(k)(ψ) ≡
n∑

i=1

w
(k)
i U(ψ; yi ) = 0. (31)
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One-step approximation of ψ̂(k) is to use

ψ̂
(k)
1 = ψ̂ −

{
U̇(k)(ψ̂)

}−1
Û(k)(ψ̂) (32)

or, even more simply, to use

ψ̂
(k)
1 = ψ̂ −

{
U̇(ψ̂)

}−1
Û(k)(ψ̂). (33)

The replication variance estimator using (33) is algebraically
equivalent to

{
U̇(ψ̂)

}−1 [ n∑
k=1

ck

{
Û(k)(ψ̂)− Û(ψ̂)

}⊗2]{
U̇(ψ̂)

}−1
,

which is very close to the sandwich variance formula in (29).
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Back to Example 4.1

For the regression imputation in Example 4.1,

θ̂Id =
1

n

n∑
i=1

{
δiyi + (1− δi )

(
β̂0 + β̂1xi

)}
.

The replication variance estimator of θ̂Id is computed by

V̂rep

(
θ̂Id

)
=

L∑
k=1

ck

(
θ̂
(k)
Id − θ̂Id

)2
(34)

where

θ̂
(k)
Id =

n∑
i=1

w
(k)
i

{
δiyi + (1− δi )

(
β̂
(k)
0 + β̂

(k)
1 xi

)}
and (β̂

(k)
0 , β̂

(k)
1 ) is the solution to

n∑
i=1

w
(k)
i δi (yi − β0 − β1xi ) (1, xi ) = (0, 0).
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Example 4.4

We now return to the setup of Example 3.11.

In this case, the deterministically imputed estimator of θ = E (Y ) is
constructed by

θ̂Id = n−1
n∑

i=1

{δiyi + (1− δi )p̂0i} (35)

where p̂0i is the predictor of yi given xi and δi = 0. That is,

p̂0i =
p(xi ; β̂){1− π(xi , 1; φ̂)}

{1− p(xi ; β̂)}{1− π(xi , 0; φ̂)}+ p(xi ; β̂){1− π(xi , 1; φ̂)}
,

where β̂ and φ̂ are jointly estimated by the EM algorithm.
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Example 4.4 (Cont’d)

E-step

S̄1
(
β | β(t), φ(t)

)
=

∑
δi=1

{yi − pi (β)} xi +
∑
δi=0

1∑
j=0

wij(t) {j − pi (β)} xi ,

where

wij(t) = Pr
(
Yi = j | xi , δi = 0;β(t), φ(t)

)
=

Pr
(
Yi = j | xi ;β(t)

)
Pr
(
δi = 0 | xi , j ;φ(t)

)∑1
y=0 Pr

(
Yi = y | xi ;β(t)

)
Pr
(
δi = 0 | xi , y ;φ(t)

)
and

S̄2
(
φ | β(t), φ(t)

)
=

∑
δi=1

{δi − π (xi , yi ;φ)}
(
x′i , yi

)′
+
∑
δi=0

1∑
j=0

wij(t) {δi − πi (xi , j ;φ)}
(
x′i , j

)′
.
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Example 4.4 (Cont’d)

M-step

The parameter estimates are updated by solving[
S̄1
(
β | β(t), φ(t)

)
, S̄2

(
φ | β(t), φ(t)

)]
= (0, 0)

for β and φ.
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Example 4.4 (Cont’d)

For replication variance estimation, we can use (34) with

θ̂
(k)
Id =

n∑
i=1

w
(k)
i

{
δiyi + (1− δi )p̂

(k)
0i

}
. (36)

where

p̂
(k)
0i =

p(xi ; β̂
(k)){1− π(xi , 1; φ̂(k))}

{1− p(xi ; β̂(k))}π(xi , 0; φ̂(k)) + p(xi ; β̂(k)){1− π(xi , 1; φ̂(k))}
.

and (β̂(k), φ̂(k)) is obtained by solving the mean score equations with

weights replaced by the replication weights w
(k)
i .

Ch 4 54 / 79



Example 4.4 (Cont’d)

That is, (β̂(k), φ̂(k)) is the solution to

S̄
(k)
1 (β, φ) ≡

∑
δi=1

w
(k)
i {yi − p(xi ;β)} xi

+
∑
δi=0

w
(k)
i

1∑
y=0

w∗iy (β, φ){y − p(xi ;β)}xi = 0

S̄
(k)
2 (β, φ) ≡

∑
δi=1

w
(k)
i {δi − π(xi , yi ;φ)} (x′i , yi )

′

+
∑
δi=0

w
(k)
i

1∑
y=0

w∗iy (β, φ){δi − π(xi , y ;β)}(x′i , y)′ = 0

and

w∗iy (β, φ) =
p(xi ;β)π(xi , 1;φ)

{1− p(xi ;β)}π(xi , 0;φ) + p(xi ;β)π(xi , 1;φ)
.
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§6 Fractional Imputation
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Monte Carlo EM

Remark

Monte Carlo EM can be used as a frequentist approach to imputation.

Convergence is not guaranteed (for fixed m).

E-step can be computationally heavy. (May use MCMC method).
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Parametric Fractional Imputation (Kim, 2011)

Parametric fractional imputation

1 More than one (say m) imputed values of ymis,i : y
∗(1)
mis,i , · · · , y

∗(m)
mis,i

from some (initial) density h (ymis,i ).

2 Create weighted data set{(
w∗ij , y

∗
ij

)
; j = 1, 2, · · · ,m; i = 1, 2 · · · , n

}
where

∑m
j=1 w

∗
ij = 1, y∗ij = (yobs,i , y

∗(j)
mis,i )

w∗ij ∝ f (y∗ij , δi ; η̂)/h(y
∗(j)
mis,i ),

η̂ is the maximum likelihood estimator of η, and f (y, δ; η) is the joint
density of (y, δ).

3 The weight w∗ij are the normalized importance weights and can be
called fractional weights.

If ymis,i is categorical, then simply use all possible values of ymis,i as the
imputed values and then assign their conditional probabilities as the
fractional weights.
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Remark

Importance sampling idea: For sufficiently large m,

m∑
j=1

w∗ij g
(
y∗ij
) ∼= ∫

g(yi )
f (yi ,δi ;η̂)
h(ymis,i )

h(ymis,i )dymis,i∫ f (yi ,δi ;η̂)
h(ymis,i )

h(ymis,i )dymis,i

= E {g (yi ) | yobs,i , δi ; η̂}

for any g such that the expectation exists.

In the importance sampling literature, h(·) is called proposal
distribution and f (·) is called target distribution.

Do not need to compute the conditional distribution
f (ymis,i | yobs,i , δi ; η). Only the joint distribution f (yobs,i , ymis,i , δi ; η)
is needed because

f (yobs,i , y
∗(j)
mis,i , δi ; η̂)/h(y

∗(j)
i,mis)∑m

k=1 f (yobs,i , y
∗(k)
mis,i , δi ; η̂)/h(y

∗(k)
i,mis)

=
f (y
∗(j)
mis,i | yobs,i , δi ; η̂)/h(y

∗(j)
i,mis)∑m

k=1 f (y
∗(k)
mis,i | yobs,i , δi ; η̂)/h(y

∗(k)
i,mis)

.

Ch 4 59 / 79



EM algorithm by fractional imputation

1 Imputation-step: generate y
∗(j)
i ,mis ∼ h (yi ,mis).

2 Weighting-step: compute

w∗ij(t) ∝ f (y∗ij , δi ; η̂(t))/h(y
∗(j)
i ,mis)

where
∑m

j=1 w
∗
ij(t) = 1.

3 M-step: update

η̂(t+1) = arg max
n∑

i=1

m∑
j=1

w∗ij(t) log f
(
η; y∗ij , δi

)
.

4 (Optional) Check if w∗ij(t) is too large for some j . If so, set

h(yi ,mis) = f (yi ,mis | yi ,obs; η̂t) and goto Step 1.

5 Repeat Step 2 - Step 4 until convergence.
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Remark

“Imputation Step” + “Weighting Step” = E-step.

The imputed values are not changed for each EM iteration. Only the
fractional weights are changed.

1 Computationally efficient (because we use importance sampling only
once).

2 Convergence is achieved (because the imputed values are not changed).
See Theorem 4.5.

For sufficiently large t, η̂(t) −→ η̂∗. Also, for sufficiently large m,
η̂∗ −→ η̂MLE .

For estimation of ψ in E{U(ψ;Y )} = 0, simply use

1

n

n∑
i=1

m∑
j=1

w∗ijU(ψ; y∗ij) = 0

where w∗ij = w∗ij (η̂) and η̂ is obtained from the above EM algorithm.
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Theorem 4.5 (Theorem 1 of Kim (2011) )

Theorem

Let

Q∗(η | η̂(t)) =
n∑

i=1

m∑
j=1

w∗ij(t) log f
(
η; y∗ij , δi

)
.

If
Q∗(η̂(t+1) | η̂(t)) ≥ Q∗(η̂(t) | η̂(t)) (37)

then
l∗obs(η̂(t+1)) ≥ l∗obs(η̂(t)), (38)

where l∗obs(η) =
∑n

i=1 ln{f ∗obs(i)(yi ,obs , δi ; η)} and

f ∗obs(i)(yi ,obs , δi ; η) =
1

m

m∑
j=1

f (y∗ij , δi ; η)/hm(y
∗(j)
i ,mis).
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Proof

By using Jensen’s inequality,

l∗obs(η̂(t+1))− l∗obs(η̂(t)) =
n∑

i=1

ln


m∑
j=1

w∗ij(t)
f (y∗ij , δi ; η̂(t+1))

f (y∗ij , δi ; η̂(t))


≥

n∑
i=1

m∑
j=1

w∗ij(t) ln

{
f (y∗ij , δi ; η̂(t+1))

f (y∗ij , δi ; η̂(t))

}
= Q∗(η̂(t+1) | η̂(t))− Q∗(η̂(t) | η̂(t)).

Therefore, (37) implies (38).
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Example 4.11: Return to Example 3.15

Fractional imputation

1 Imputation Step: Generate y
∗(1)
i , · · · , y∗(m)

i from f
(
yi | xi ; θ̂(0)

)
.

2 Weighting Step: Using the m imputed values generated from Step 1,
compute the fractional weights by

w∗ij(t) ∝
f
(
y
∗(j)
i | xi ; θ̂(t)

)
f
(
y
∗(j)
i | xi ; θ̂(0)

) {1− π(xi , y
∗(j)
i ; φ̂(t))

}
where

π(xi , yi ; φ̂) =
exp

(
φ̂0 + φ̂1xi + φ̂2yi

)
1 + exp

(
φ̂0 + φ̂1xi + φ̂2yi

) .
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Example 4.11

Using the imputed data and the fractional weights, the M-step can be
implemented by solving

n∑
i=1

m∑
j=1

w∗ij(t)S
(
θ; xi , y

∗(j)
i

)
= 0

and
n∑

i=1

m∑
j=1

w∗ij(t)

{
δi − π(φ; xi , y

∗(j)
i )

}(
1, xi , y

∗(j)
i

)
= 0, (39)

where S (θ; xi , yi ) = ∂ log f (yi | xi ; θ)/∂θ.
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Example 4.12: Back to Example 3.18 (GLMM)

Level 1 model
yij ∼ f1(yij | xij , ai ; θ1)

for some fixed θ1 and ai random.

Level 2 model
ai ∼ f2(ai ; θ2)

Latent variable: ai

We are interested in generating ai from

p(ai | xi , yi ; θ1, θ) ∝


ni∏
j=1

f1(yij | xij , ai ; θ1)

 f2(ai ; θ2)
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Example 4.12 (Cont’d)

E-step

1 Imputation Step: Generate a
∗(1)
i , · · · , a∗(m)

i from f2(ai ; θ̂
(t)
2 ).

2 Weighting Step: Using the m imputed values generated from Step 1,
compute the fractional weights by

w∗ij(t) ∝ g1(yi | xi , a∗(j)i ; θ̂
(t)
1 )

where g1(yi | xi , ai ; θ̂1) =
∏ni

j=1 f1(yij | xij , ai ; θ1).

M-step: Update the parameters by solving

n∑
i=1

m∑
j=1

w∗ij(t)S1
(
θ1; xi , yi , a

∗(j)
i

)
= 0

n∑
i=1

m∑
j=1

w∗ij(t)S2
(
θ2; a

∗(j)
i

)
= 0.
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Example 4.13: Measurement error model

Interested in estimating θ in f (y | x ; θ).

Instead of observing x , we observe z which can be highly correlated
with x .

Thus, z is an instrumental variable for x :

f (y | x , z) = f (y | x)

and
f (y | z = a) 6= f (y | z = b)

for a 6= b.

In addition to original sample, we have a separate calibration sample
that observes (xi , zi ).
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Example 4.13 (Cont’d)

Table: Data Structure

Z X Y

Calibration Sample o o
Original Sample o o

The goal is to generate x in the original sample from

f (xi | zi , yi ) ∝ f (xi | zi ) f (yi | xi , zi )
= f (xi | zi ) f (yi | xi )

Obtain a consistent estimator f̂ (x | z) from calibration sample.
E-step

1 Generate x
∗(1)
i , · · · , x∗(m)

i from f̂ (xi | zi ).

2 Compute the fractional weights associated with x
∗(j)
i by

w∗ij ∝ f (yi | x∗(j)i ; θ̂)

M-step: Solve the weighted score equation for θ.
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Remarks for Computation

Recall that, writing

S̄∗(η | η) =
n∑

i=1

M∑
j=1

w∗ij (η)S(η; y∗ij , δi )

where w∗ij (η) is the fractional weight associated with y∗ij , denoted by

w∗ij (η) =
f (y∗ij , δi ; η)/hm(y

∗(j)
i ,mis)∑m

k=1 f (y∗ik , δi ; η)/hm(y
∗(k)
i ,mis)

, (40)

and S(η; y, δ) = ∂ log f (y, δ; η)/∂η, the EM algorithm for fractional
imputation can be expressed as

η̂(t+1) ← solve S̄∗(η | η(t)) = 0.
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Remarks for Computation

Instead of EM algorithm, Newton-type algorithm can also be used.
The Newton-type algorithm for computing the MLE from the
fractionally imputed data is given by

η̂(t+1) = η̂(t) +
{
I ∗obs(η̂(t))

}−1
S̄∗(η̂(t) | η̂(t))

where

I ∗obs(η) = −
n∑

i=1

m∑
j=1

w∗ij (η)Ṡ(η; y∗ij , δi )

−
n∑

i=1

m∑
j=1

w∗ij (η)
{
S(η; y∗ij , δi )− S̄∗i (η)

}⊗2
,

Ṡ(η; y, δ) = ∂S(η; y, δ)/∂η and S̄∗i (η) =
∑M

j=1 w
∗
ij (η)Ṡ(η; y∗ij , δi ).
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Estimation of general parameter

Parameter Ψ is defined through E{U(Ψ;Y )} = 0.

The FI estimator of Ψ is computed by solving

n∑
i=1

m∑
j=1

w∗ij (η̂)U(Ψ; y∗ij) = 0. (41)

Note that η̂ is the solution to

n∑
i=1

m∑
j=1

w∗ij (η̂)S
(
η̂; y∗ij

)
= 0.
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Estimation of general parameter

We can use either linearization method or replication method for
variance estimation. For linearization method, using Theorem 4.2, we
can use sandwich formula

V̂
(

Ψ̂
)

= τ̂−1q Ω̂q τ̂
−1′
q (42)

where

τ̂q = n−1
n∑

i=1

m∑
j=1

w∗ij U̇
(

Ψ̂; y∗ij

)
Ω̂q = n−1 (n − 1)−1

n∑
i=1

(q̂∗i − q̄∗n)⊗2 ,

with q̂∗i = Ū∗i + κ̂S̄∗i , where (Ū∗i , S̄
∗
i ) =

∑m
j=1 w

∗
ij (U

∗
ij ,S

∗
ij ),

U∗ij = U(Ψ̂; y∗ij), S∗ij = S(η̂; y∗ij), and

κ̂ =
n∑

i=1

m∑
j=1

w∗ij (η̂)
(
U∗ij − Ū∗i

)
S∗ij {I ∗obs(η̂)}−1
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Estimation of general parameter

For replication method, we first obtain the k-th replicate η̂(k) of η̂ by
solving

n∑
i=1

m∑
j=1

w
(k)
i w∗ij (η) S

(
η; y∗ij

)
= 0.

Once η̂(k) is obtained then the k-th replicate Ψ̂(k) of Ψ̂ is obtained by
solving

n∑
i=1

m∑
j=1

w
(k)
i w∗ij (η̂

(k))U(Ψ; y∗ij) = 0

for ψ.

The replication variance estimator of Ψ̂ from (41) is obtained by

V̂rep(Ψ̂) =
L∑

k=1

ck

(
Ψ̂(k) − Ψ̂

)2
.
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Example 4.15: Nonparametric Fractional Imputation

Bivariate data: (xi , yi )

xi are completely observed but yi is subject to missingness.

Joint distribution of (x , y) completely unspecified.

Assume MAR in the sense that P(δ = 1 | x , y) does not depend on y .

Without loss of generality, assume that δi = 1 for i = 1, · · · , r and
δi = 0 for i = r + 1, · · · , n.

We are only interested in estimating θ = E (Y ).
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Example 4.15 (Cont’d)

Let Kh(xi , xj) = K ((xi − xj)/h) be the Kernel function with
bandwidth h such that K (x) ≥ 0 and∫

K (x)dx = 1,

∫
xK (x)dx = 0, σ2K ≡

∫
x2K (x)dx > 0.

Examples include the following:

Boxcar kernel: K (x) = 1
2 I (x)

Gaussian kernel: K (x) = 1√
2π

exp(− 1
2x

2)

Epanechnikov kernel: K (x) = 3
4 (1− x2)I (x)

Tricube Kernel: K (x) = 70
81 (1− |x |3)3I (x)

where

I (x) =

{
1 if |x | ≤ 1
0 if |x | > 1.
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Example 4.15 (Cont’d)

Nonparametric regression estimator of m(x) = E (Y | x):

m̂(x) =
r∑

i=1

li (x)yi (43)

where

li (x) =
K
(
x−xi
h

)∑
j K
(
x−xj
h

) .
Estimator in (43) is often called Nadaraya-Watson kernel estimator.

Under some regularity conditions and under the optimal choice of h
(with h∗ = O(n−1/5)), it can be shown that

E
[
{m̂(x)−m(x)}2

]
= O(n−4/5).

Thus, its convergence rate is slower than that of parametric one.
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Example 4.15 (Cont’d)

However, the imputed estimator of θ using (43) can achieve the√
n-consistency. That is,

θ̂NP =
1

n

{
r∑

i=1

yi +
n∑

i=r+1

m̂(xi )

}
(44)

achieves √
n
(
θ̂NP − θ

)
−→ N(0, σ2) (45)

where σ2 = E{v(x)/π(x)}+ V {m(x)}, m(x) = E (y | x),
v(x) = V (y | x) and π(x) = E (δ | x).

Result (45) was first proved by Cheng (1994).
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Example 4.15 (Cont’d)

We can express θ̂NP in (45) as a nonparametric fractional imputation
(NFI) estimator of the form

θ̂NFI =
1

n


r∑

i=1

yi +
n∑

j=r+1

r∑
i=1

w∗ij y
∗(j)
i


where w∗ij = li (xj), which is defined after (43), and y

∗(j)
i = yi .

Variance estimation can be implemented by a resampling method,
such as bootstrap.
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