Dealing With Missing Values in R

Julie Josse

Zurich R Courses

ETH Zurich February 27-28 2020

- Dimensionality reduction methods to visualize complex data (PCA based): multi-sources data, textual data, arrays
- Latent variables models
- Missing values matrix completion
- Low rank estimation, selection of regularization parameters
- Causal inference (estimating ATE, HTE) with missing values
- Fields of application: bio-sciences (agronomy, sensory analysis), health data (hospital APHP)
- R community: book R for Statistics, R foundation, R Forwards (widen the participation of minorities), R packages and JSS papers, R taskview on missing values, plateform rmisstastic

FactoMineR explore continuous, categorical, multiple contingency tables (correspondence analysis), combine clustering and PC, .. MissMDA for single and multiple imputation, PCA with missing denoiseR to denoise data

Dealing with missing values



Outline

- Day 1: Morning
 - Introduction
 - Single imputation
 - Matrix completion with PCA
- Day 1: Afternoon
 - Multiple imputation
- Day 2: Morning
 - Categorical variables, mixed data
 - EM algorithms
- Day 2: Afternoon
 - Supervised learning with missing values
 - Informative missing values mechanism

Outline

1. Introduction

2. Single imputation

- Single imputation methods
- Single imputation with PCA
- Practice
- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

are everywhere: unanswered questions in a survey, lost data, damaged plants, machines that fail...

"The best thing to do with missing values is not to have any"

 \Rightarrow Still an issue in the "big data" area

Data integration: data from different sources

- 20000 patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex	Weight	Lactactes	BP	shock	
Beaujon	fall	54	m	85	NM	180	yes	
Pitie	gun	26	m	NR	NA	131	no	
Beaujon	moto	63	m	80	3.9	145	yes	
Pitie	moto	30	W	NR	Imp	107	no	
HEGP	knife	16	m	98	2.5	118	no	

:

- 20000 patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex	Weight	Lactactes	BP	shock	
Beaujon	fall	54	m	85	NM	180	yes	
Pitie	gun	26	m	NR	NA	131	no	
Beaujon	moto	63	m	80	3.9	145	yes	
Pitie	moto	30	W	NR	Imp	107	no	
HEGP	knife	16	m	98	2.5	118	no	
:								•.

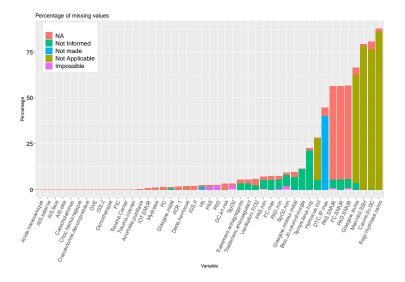
⇒ Estimate causal effect: Administration of the treatment "tranexamic acid" (within 3 hours after the accident) on the outcome mortality for traumatic brain injury patients

- 20000 patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex	Weight	Lactactes	BP	shock	
Beaujon	fall	54	m	85	NM	180	yes	
Pitie	gun	26	m	NR	NA	131	no	
Beaujon	moto	63	m	80	3.9	145	yes	
Pitie	moto	30	W	NR	Imp	107	no	
HEGP	knife	16	m	98	2.5	118	no	
:								·.,

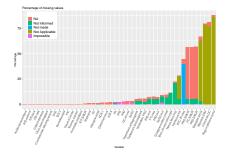
 \Rightarrow **Predict**: the risk of hemorrhagic shock given pre-hospital features

Ex random forests/logistic regression with covariates with missing values



Multilevel data/ data integration: Systematic missing variable in one hospital

Complete-case analysis



```
?lm, ?glm, na.action = na.omit
```

"One of the ironies of Big Data is that missing data play an ever more significant role" (R. Sameworth, 2019)

An $n \times p$ matrix, each entry is missing with probability 0.01 $p = 5 \implies \approx 95\%$ of rows kept $p = 300 \implies \approx 5\%$ of rows kept Dealing with missing values depends on the pattern of missing values and the **mechanism** leading to missing values (Rubin, 1976)

Ex: Two variables Income and Age with missing values on Income.

Missing Completely at Random (MCAR)

The probability to have missing values on income is independent of the values of age and the values of income. Each entry has the same probability to be observed.

Missing at Random (MAR)

The probability to have missing values on income depends on the values of age: older people are less encline to reveal their income

Missing not at Random (MNAR)

The probability to have missing values on income depends on the values of income: rich people are less encline to reveal their income

Missing values mechanisms

- $X \in \mathbb{R}^{n imes p}$ the data, $(X_{\mathrm{obs}}, X_{\mathrm{mis}})$ the observed and missing values,
- $M \in \mathbb{R}^{n \times p}$ the missing-data pattern:

$$M_{ij} = \begin{cases} 1 & \text{if } X_{ij} \text{ is observed,} \\ 0 & \text{otherwise.} \end{cases}$$

MCAR mechanism

$$g(M|X;\phi) = g(M;\phi), \quad \forall X,\phi.$$

 $\phi :$ the unknown parameters of the missingness.

MAR mechanism

$$g(M|X;\phi) = g(M|X_{obs};\phi), \quad \forall X_{mis},\phi.$$

MNAR mechanism

Other cases, i.e.

$$g(M|X;\phi) = g(M|X_{\rm obs}, X_{\rm mis};\phi), \quad \forall \phi.$$

Missing value mechanisms (Rubin, 1976)

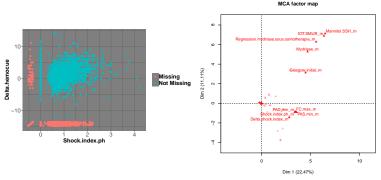
MCAR	$orall \phi, orall \mathbf{m}, \mathbf{x}, g_{\phi}(\mathbf{m} \mathbf{x}) = g_{\phi}(\mathbf{m})$
MAR	$\forall \phi, \forall i, \forall \mathbf{x}', o(\mathbf{x}', \mathbf{m}_i) = o(\mathbf{x}_i, \mathbf{m}_i) \Rightarrow g_{\phi}(\mathbf{m}_i \mathbf{x}') = g_{\phi}(\mathbf{m}_i \mathbf{x}_i)$
MNAR	$(e.g. \ g_{\phi}((0, 0, 1, 0) \mid (3, 2, 4, 8)) = g_{\phi}((0, 0, 1, 0) \mid (3, 2, 7, 8)))$ Not MAR
	ightarrow useful for likelihoods

- $f_{\theta}(X)$, the distribution for the complete data
- $g_{\phi}(M|X)$, the missing values mechanism
- \Rightarrow Assume MAR: ignore $g_{\phi}(M|X)$ when doing (likelihood) inference on θ . Maximizing likelihood for observed data while ignoring (marginalizing) the unobserved values gives maximum likelihood estimates.

Visualization

The first thing to do with missing values (as for any analysis) is descriptive statistics: Visualization of patterns to get hints on how and why they occur

VIM (M. Templ), naniar (N. Tierney), FactoMineR (Husson et al.)



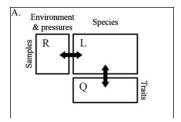
Right: *PAS_m* close to *PAD_m*: Often missing on both *PAS* & *PAD IOT*: nested questions. Q1: yes/no, if yes Q2 - Q4, if no Q2 - Q4 "missing" Note: Crucial **before** starting any treatment of missing values and **after**

Contingency tables with side information

National agency for wildlife and hunting management (ONCFS)

Data: Water-bird count data, 1990-2016 from 722 wetland sites in 5 countries in North Africa

Sites and years info: meteorological, geographical (altitude, long)



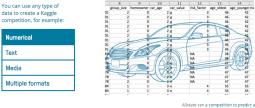
 \Rightarrow Aims: Assess the effect of time on species abundances Monitor the population and assess wetlands conservation policies.

 \Rightarrow 70% of missing values in contingency tables

Multi-blocks data set

L'OREAL: 100 000 women in different countries - 300 questions

- Self-assessment questionnaire: life style, skin and hair characteristics, care and consumer habits
- Clinical assessments by a dermatologist: facial skin complexion, wrinkles, scalp dryness, greasiness
- Hair assessments by a hair dresser: abundance, volume, breakage, curliness
- Skin and Hair photographs and measurements: sebum quantity, etc.



Alistate ran a competition to predict a customer's purchase based on a limited amount of shopping history data.

Predict in which country a new user will make his first booking: age: 42.4 % date first booking: 6.7 % first affiliate tracked: 2.2 % gender: 46 %

- F. Husson (Agrocampus), G. Robin (PhD student), B. Narasimhan (Stanford): distributed matrix completion for multilevel medical data
- G. Robin, R. Tibshirani (Stanford): imputation of contingency tables with side information
- W. Jiang (PhD student), M. Lavielle (Inria), G. Bogdan (Wroclaw): glm with missing values and variable selection controlling FDR
- E. Scornet (X), Marine Le Morvan (Postdoc), G. Varoquaux (inria): random forest with missing values MLP with missing values
- I. Mayer (PhD student), S. Wager (Stanford), J.P. Vert (Google Brain): Causal inference, deep-latent variables models with missing values

Julie Josse

Dealing With Missing Values in R

Books: Schafer (2002), Little & Rubin (2002); Kim & Shao (2013); Carpenter & Kenward (2013); van Buuren (2018), etc.

Modify the estimation process to deal with missing values

Maximum likelihood: **EM algorithm** to obtain point estimates + Supplemented EM (Meng & Rubin, 1991) / Louis formulae for their variability Ex logistic regression: EM to get $\hat{\beta}$ + Louis to get $\hat{V}(\hat{\beta})$

Aim: Estimate parameters & their variance from an incomplete data \Rightarrow Inferential framework

Books: Schafer (2002), Little & Rubin (2002); Kim & Shao (2013); Carpenter & Kenward (2013); van Buuren (2018), etc.

Modify the estimation process to deal with missing values

Maximum likelihood: **EM algorithm** to obtain point estimates + Supplemented EM (Meng & Rubin, 1991) / Louis formulae for their variability Ex logistic regression: EM to get $\hat{\beta}$ + Louis to get $\hat{V}(\hat{\beta})$ Cons: Difficult to establish - not many softwares even for simple models One specific algorithm for each statistical method...

Aim: Estimate parameters & their variance from an incomplete data \Rightarrow Inferential framework

Books: Schafer (2002), Little & Rubin (2002); Kim & Shao (2013); Carpenter & Kenward (2013); van Buuren (2018), etc.

Modify the estimation process to deal with missing values

Maximum likelihood: **EM algorithm** to obtain point estimates + Supplemented EM (Meng & Rubin, 1991) / Louis formulae for their variability Ex logistic regression: EM to get $\hat{\beta}$ + Louis to get $\hat{V}(\hat{\beta})$ Cons: Difficult to establish - not many softwares even for simple models One specific algorithm for each statistical method...

Imputation (multiple) to get a complete data set

Any analysis can be performed Ex logistic regression: Impute and apply logistic model to get $\hat{\beta}$, $\hat{V}(\hat{\beta})$

Aim: Estimate parameters & their variance from an incomplete data \Rightarrow Inferential framework

Outline

1. Introduction

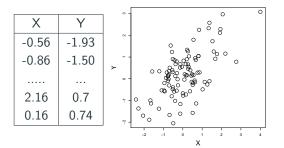
2. Single imputation

- Single imputation methods
- Single imputation with PCA
- Practice
- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

Outline

- 1. Introduction
- 2. Single imputation
 - Single imputation methods
 - Single imputation with PCA
 - Practice
- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

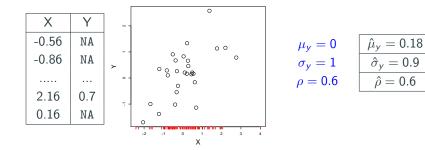
• $(x_i, y_i) \underset{i i d}{\sim} \mathcal{N}_2((\mu_x, \mu_y), \Sigma_{xy})$



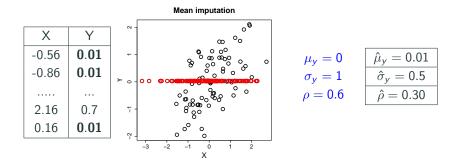
 μ_{y}

 σ_{v}

- $(x_i, y_i) \underset{\text{i.i.d.}}{\sim} \mathcal{N}_2((\mu_x, \mu_y), \Sigma_{xy})$
- 70 % of missing entries completely at random on Y



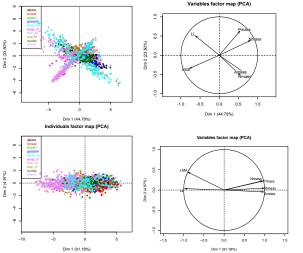
- $(x_i, y_i) \underset{\text{i.i.d.}}{\sim} \mathcal{N}_2((\mu_x, \mu_y), \Sigma_{xy})$
- 70 % of missing entries completely at random on Y
- Estimate parameters on the mean imputed data



Mean imputation deforms joint and marginal distributions

Mean imputation is bad for estimation

Individuals factor map (PCA)



library(FactoMineR)
PCA(ecolo)
Warning message: Missing
are imputed by the mean
of the variable:
You should use imputePCA
from missMDA

library(missMDA)
imp <- imputePCA(ecolo)
PCA(imp\$comp)</pre>

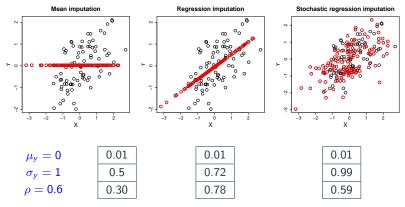
Ecological data: ¹ n = 69000 species - 6 traits. Estimated correlation between Pmass & Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)

¹Wright, I. et al. (2004). The worldwide leaf economics spectrum. *Nature*.

Imputation methods

- by regression takes into account the relationship: Estimate β impute $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \Rightarrow$ variance underestimated and correlation overestimated
- by stochastic reg: Estimate β and σ impute from the predictive $y_i \sim \mathcal{N}\left(x_i\hat{\beta}, \hat{\sigma}^2\right) \Rightarrow$ preserve distributions

Here $\hat{\beta}, \hat{\sigma}^2$ estimated with complete data, but MLE can be obtained with EM



Imputation with joint model with gaussian distribution

 \Rightarrow Hypothesis $x_{i.} \sim \mathcal{N}(\mu, \Sigma)$

Bivariate case with missing values on $x_{.1}$ (stochastic regression):

- $\bullet~{\rm estimate}~\beta~{\rm and}~\sigma$
- impute from the predictive $y_i \sim \mathcal{N}\left(x_i \hat{\beta}, \hat{\sigma}^2\right)$

Extension to the multivariate case:

- $\bullet\,$ Estimate μ and Σ from an incomplete data with EM
- Impute by drawing from the conditional distribution $X_{\text{MIS}}|X_{\text{OBS}} \sim \mathcal{N}(\mu_{\text{MIS}|\text{OBS}}, \Sigma_{\text{MIS}|\text{OBS}})$

 $\mu_{\text{MIS}|\text{OBS}} = \mathbb{E}[X_{\text{MIS}}] + \Sigma_{\text{MIS},\text{OBS}} \Sigma_{\text{OBS},\text{OBS}}^{-1} (X_{\text{OBS}} - \mathbb{E}[X_{\text{OBS}}]) .$

- \Rightarrow Corresponds to imputation by regression
- \Rightarrow Schur complements:

$$\Sigma_{\text{MIS}|\text{OBS}} = \Sigma_{\text{MIS}} - \Sigma_{\text{MIS},\text{OBS}} \Sigma_{\text{OBS},\text{OBS}} \Sigma_{\text{OBS},\text{MIS}} \,.$$

- > pre <- prelim.norm(as.matrix(don))</pre>
- > thetahat <- em.norm(pre)</pre>
- > imp <- imp.norm(pre, thetahat, don)</pre>

Assuming a joint model

- Gaussian distribution: $x_{i.} \sim \mathcal{N}\left(\mu, \Sigma
 ight)$ (Amelia Honaker, King, Blackwell)
- low rank: $X_{n \times d} = \mu_{n \times d} + \varepsilon \varepsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ with μ of low rank k (softimpute Hastie & Mazuder; missMDA J. & Husson)
- latent class nonparametric Bayesian (dpmpm Reiter)
- deep learning using variational autoencoders (MIWAE, Mattei, 2018)

Using conditional models (joint implicitly defined)

- with logistic, multinomial, poisson regressions (mice van Buuren)
- iterative impute each variable by random forests (missForest Stekhoven)

Imputation for categorical, mixed, blocks/multilevel data ², etc.

 \Rightarrow Missing values taskview³ J., Mayer., Tierney, Vialaneix

²J., Husson, Robin & Narasimhan. (2018). Imputation of mixed data with multilevel SVD. ³https://cran.r-project.org/web/views/MissingData.html

Outline

1. Introduction

2. Single imputation

- Single imputation methods
- Single imputation with PCA
- Practice
- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

PCA (complete)

Find the subspace that best represents the data

Figure 1: Camel or dromedary?

- \Rightarrow Best approximation with projection
- \Rightarrow Best representation of the variability
- \Rightarrow Do not distort the distances between individuals

PCA (complete)

Find the subspace that best represents the data

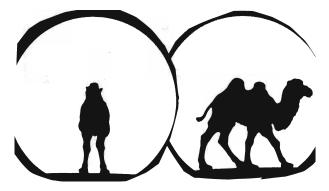
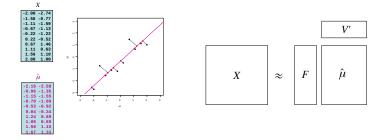


Figure 1: Camel or dromedary? source J.P. Fénelon

- \Rightarrow Best approximation with projection
- \Rightarrow Best representation of the variability
- \Rightarrow Do not distort the distances between individuals

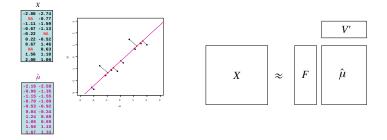
PCA reconstruction



⇒ Minimizes distance between observations and their projection ⇒ Approx $X_{n \times p}$ with a low rank matrix S :

$$\operatorname{argmin}_{\mu}\left\{ \left\|X-\mu
ight\|_{2}^{2}:\operatorname{rank}\left(\mu
ight)\leq S
ight\}
ight\}$$

PCA reconstruction



⇒ Minimizes distance between observations and their projection ⇒ Approx $X_{n \times p}$ with a low rank matrix S :

$$\operatorname{argmin}_{\mu}\left\{ \|X-\mu\|_{2}^{2}:\operatorname{rank}\left(\mu
ight)\leq S
ight\}$$

SVD X:
$$\hat{\mu}^{PCA} = U_{n \times S} \Lambda_{S \times S}^{\frac{1}{2}} V'_{p \times S}$$
 $F = U \Lambda^{\frac{1}{2}}$ PC - scores
= $F_{n \times S} V'_{p \times S}$ V principal axes - loadings

 \Rightarrow PCA: least squares

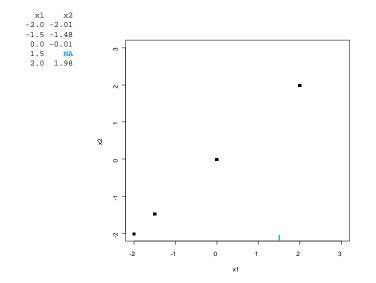
$$\operatorname{argmin}_{\mu}\left\{\left\|X_{n imes p}-\mu_{n imes p}
ight\|_{2}^{2}:\operatorname{rank}\left(\mu
ight)\leq S
ight\}$$

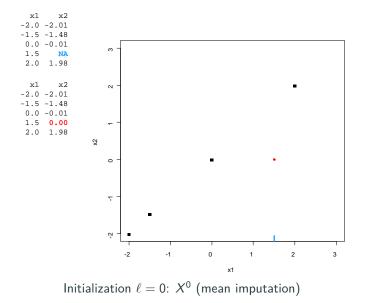
 \Rightarrow PCA with missing values: weighted least squares

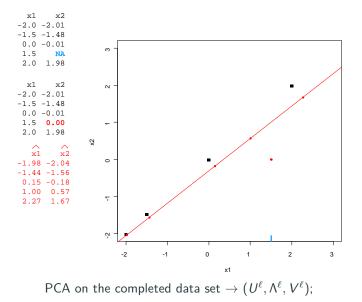
$$\operatorname{argmin}_{\mu}\left\{ \left\| \textit{W}_{\textit{n} imes \textit{p}} st (\textit{X} - \mu)
ight\|_{2}^{2} : \operatorname{rank}\left(\mu
ight) \leq \textit{S}
ight\}$$

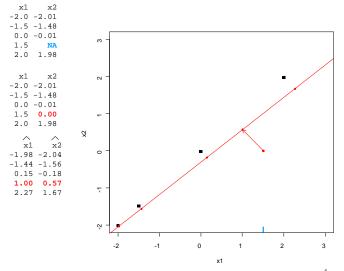
with $W_{ij} = 0$ if X_{ij} is missing, $W_{ij} = 1$ otherwise; * elementwise multiplication

Many algorithms: weighted alternating least squares (Gabriel & Zamir, 1979); iterative PCA (Kiers, 1997)

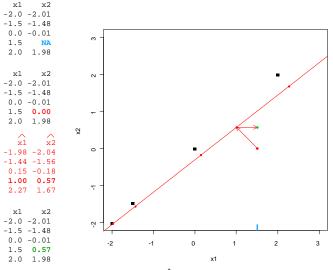




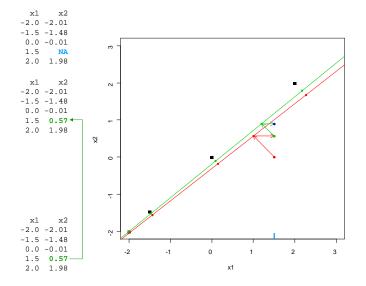


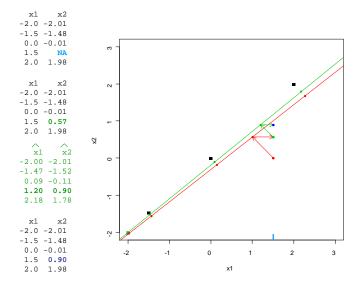


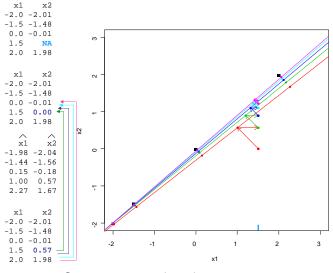
Missing values imputed with the fitted matrix $\hat{\mu}^\ell = U^\ell \Lambda^{1/2^\ell} V^{\ell\prime}$



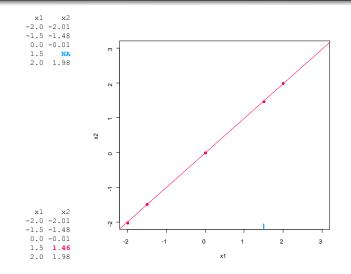
The new imputed dataset is $\hat{X}^\ell = W * X + (\mathbf{1} - W) * \hat{\mu}^\ell$







Steps are repeated until convergence



PCA on the completed data set $\rightarrow (U^{\ell}, \Lambda^{\ell}, V^{\ell})$ Missing values imputed with the fitted matrix $\hat{\mu}^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell \prime}$

- initialization $\ell = 0$: X^0 (mean imputation)
- ❷ step *l*:
 - (a) PCA on the completed data $\rightarrow (U^{\ell}, \Lambda^{\ell}, V^{\ell});$ S dimensions kept
 - (b) missing values are imputed with $(\hat{\mu}^{S})^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell'}$ the new imputed data is $\hat{X}^{\ell} = W * X + (1 - W) * (\hat{\mu}^{S})^{\ell}$
- **③** steps of estimation and imputation are repeated

• initialization $\ell = 0$: X^0 (mean imputation)

Ø step ℓ:

- (a) PCA on the completed data $ightarrow (U^\ell, \Lambda^\ell, V^\ell);$ S dimensions kept
- (b) missing values are imputed with $(\hat{\mu}^{S})^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell'}$ the new imputed data is $\hat{X}^{\ell} = W * X + (1 - W) * (\hat{\mu}^{S})^{\ell}$
- **③** steps of estimation and imputation are repeated

 $\Rightarrow \hat{\mu} \text{ from incomplete data: EM algo } X = \mu + \varepsilon, \ \varepsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N} \left(0, \ \sigma^2 \right)$ with μ of low rank , $x_{ij} = \sum_{s=1}^{S} \sqrt{\tilde{\lambda}_s} \tilde{u}_{is} \tilde{v}_{js} + \varepsilon_{ij}$

 \Rightarrow Completed data: good imputation (matrix completion, Netflix)

- initialization $\ell = 0$: X^0 (mean imputation)
- Ø step ℓ:
 - (a) PCA on the completed data $\rightarrow (U^{\ell}, \Lambda^{\ell}, V^{\ell});$ S dimensions kept
 - (b) missing values are imputed with $(\hat{\mu}^{S})^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell'}$ the new imputed data is $\hat{X}^{\ell} = W * X + (1 - W) * (\hat{\mu}^{S})^{\ell}$
- **③** steps of estimation and imputation are repeated

 $\Rightarrow \hat{\mu} \text{ from incomplete data: EM algo } X = \mu + \varepsilon, \ \varepsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N} \left(0, \ \sigma^2 \right)$ with μ of low rank , $x_{ij} = \sum_{s=1}^{S} \sqrt{\tilde{\lambda}_s} \tilde{u}_{is} \tilde{v}_{js} + \varepsilon_{ij}$

 \Rightarrow Completed data: good imputation (matrix completion, Netflix)

Reduction of variability (imputation by $U\Lambda^{1/2}V'$)

Selecting S? Generalized cross-validation (J. & Husson, 2012)

$$\Rightarrow \mathsf{EM-CV} (\mathsf{Bro} \ et \ al. \ 2008) \Rightarrow \mathsf{MSEP}_{S} = \frac{1}{np} \sum_{i=1}^{n} \sum_{j=1}^{p} (X_{ij} - (\hat{\mu}_{ij}^{S})^{-ij})^{2} \Rightarrow \mathsf{Computational costly}$$

$$\Rightarrow \mathsf{EM-CV} (\mathsf{Bro} \ et \ al. \ 2008) \Rightarrow \mathsf{MSEP}_{S} = \frac{1}{np} \sum_{i=1}^{n} \sum_{j=1}^{p} (X_{ij} - (\hat{\mu}_{ij}^{S})^{-ij})^{2} \Rightarrow \mathsf{Computational costly}$$

$$\Rightarrow \mathsf{EM-CV} (\mathsf{Bro} \ et \ al. \ 2008)$$

$$\Rightarrow \mathsf{MSEP}_{S} = \frac{1}{np} \sum_{i=1}^{n} \sum_{j=1}^{p} (X_{ij} - (\hat{\mu}_{ij}^{S})^{-ij})^{2}$$

$$\Rightarrow \mathsf{Computational \ costly}$$

$$\Rightarrow \mathsf{EM-CV} (\mathsf{Bro} \ et \ al. \ 2008)$$

$$\Rightarrow \mathsf{MSEP}_{S} = \frac{1}{np} \sum_{i=1}^{n} \sum_{j=1}^{p} (X_{ij} - (\hat{\mu}_{ij}^{S})^{-ij})^{2}$$

$$\Rightarrow \mathsf{Computational \ costly}$$

 \Rightarrow In regression $\hat{y} = Py$ (Craven & Whaba, 1979)

$$\hat{y}_i^{-i} - y_i = \frac{\hat{y}_i - y_i}{1 - P_{i,i}}$$

$$\Rightarrow \text{EM-CV (Bro et al. 2008)} \\\Rightarrow \text{MSEP}_{S} = \frac{1}{np} \sum_{i=1}^{n} \sum_{j=1}^{p} (X_{ij} - (\hat{\mu}_{ij}^{S})^{-ij})^{2} \\\Rightarrow \text{Computational costly}$$

 \Rightarrow In regression $\hat{y} = Py$ (Craven & Whaba, 1979)

$$\hat{y}_i^{-i} - y_i = \frac{\hat{y}_i - y_i}{1 - P_{i,i}}$$

 \Rightarrow Aim: write PCA as $\hat{\mu}^{(S)}=PX$

$$(\hat{\mu}_{ij}^{S})^{-ij} - x_{ij} \simeq rac{(\hat{\mu}_{ij}^{S}) - X_{ij}}{1 - P_{ij,ij}}$$

2 projection matrices: $||X_{n \times p} - F_{n \times S}V'_{S \times p}||_2^2$

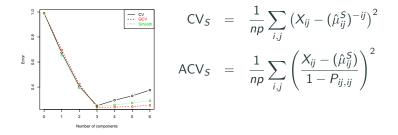
$$\begin{cases} V' = (F'F)^{-1}F'X \Rightarrow P_F = F(F'F)^{-1}F'\\ F = XV(V'V)^{-1} \Rightarrow P_V = V(V'V)^{-1}V' \end{cases}$$

$$\hat{\mu}^{S} = FV' = XP_{V} = P_{F}X$$
$$\operatorname{vec}(\hat{\mu}^{(S)}) = P^{(S)}\operatorname{vec}(X) \quad P_{np \times np}^{(S)} = (P_{V}^{'} \otimes \mathbb{I}_{n}) + (\mathbb{I}_{p}^{'} \otimes P_{F}) - (P_{V}^{'} \otimes P_{F})$$

Pazman & Denis, 2002; Candes & Tao, 2009

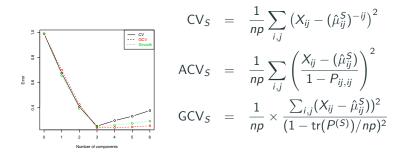
 \Rightarrow Number of independent parameters:

$$\hat{\sigma}^2 = \frac{RSS}{\operatorname{tr}\left(\mathbb{I}_{np} - P^{(S)}\right)} = \frac{n\sum_{s=S+1}^{\min(n,p)} \lambda_s}{np - (nS + pS - S^2)}$$



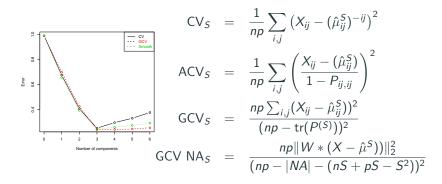
Josse, J. & Husson, F. Selecting the number of components in PCA using cross-validation approximations. Computational Statististics and Data Analysis.

Cross-validation approximations



Josse, J. & Husson, F. Selecting the number of components in PCA using cross-validation approximations. Computational Statististics and Data Analysis.

Cross-validation approximations



Josse, J. & Husson, F. Selecting the number of components in PCA using cross-validation approximations. Computational Statististics and Data Analysis.

Overfitting when:

- many parameters / the number of observed values (the number of dimensions *S* and of missing values are important)
- data are very noisy
- \Rightarrow Trust too much the relationship between variables

Remarks:

- missing values: special case of small data set
- iterative PCA: prediction method

Solution:

 $\Rightarrow \mathsf{Shrinkage} \ \mathsf{methods}$

 \Rightarrow Overfitting issues of iterative PCA: many parameters ($U_{n \times S}$, $V_{S \times p}$)/observed values (S large - many NA); noisy data

 \Rightarrow Regularized versions. Init - estimation - imputation steps:

imputation $\hat{\mu}_{ij}^{\mathsf{PCA}} = \sum_{s=1}^{S} \sqrt{\lambda_s} u_{is} v_{js}$ is replaced by

a "shrunk" impute $\hat{\mu}_{ij}^{\mathsf{Soft}} = \sum_{s=1}^{p} \left(\sqrt{\lambda_s} - \lambda \right)_+ u_{is} v_{js}$

$$X = \mu + \varepsilon$$
 $\operatorname{argmin}_{\mu} \left\{ \|W * (X - \mu)\|_{2}^{2} + \lambda \|\mu\|_{*}
ight\}$

SoftImpute for large matrices. T. Hastie, R. Mazumber, 2015, Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares. *JMLR* Implemented in softImpute

Regularized iterative PCA

 \Rightarrow Init. - estimation - imputation steps. In missMDA (Youtube) The imputation step:

$$\hat{\mu}_{ij}^{\mathsf{PCA}} = \sum_{s=1}^{S} \sqrt{\lambda_s} u_{is} v_{js}$$

is replaced by a "shrunk" imputation step (Efron & Morris 1972):

$$\hat{\mu}_{ij}^{\mathsf{rPCA}} = \sum_{s=1}^{S} \left(\frac{\lambda_s - \hat{\sigma}^2}{\lambda_s} \right) \sqrt{\lambda_s} u_{is} v_{js} = \sum_{s=1}^{S} \left(\sqrt{\lambda_s} - \frac{\hat{\sigma}^2}{\sqrt{\lambda_s}} \right) u_{is} v_{js}$$

 $\sigma^2 \text{ small} \rightarrow \text{regularized PCA} \approx \text{PCA}$ $\sigma^2 \text{ large} \rightarrow \text{mean imputation}$

$$\hat{\sigma}^2 = \frac{RSS}{ddl} = \frac{n \sum_{s=S+1}^{p} \lambda_s}{np - p - nS - pS + S^2 + S} \qquad (X_{n \times p}; U_{n \times S}; V_{p \times S})$$

Properties

⇒ Results of PCA obtained from an incomplete data set: graph of observations and correlation circle. Missing values are skipped $||W * (X - \mu)||^2$

 \Rightarrow Very good quality of imputation. Using similarities between individuals and relationship between variables. Popular in machine learning with recommandation systems (Netflix: 99% missing).

Model makes sense: Data = structure of rank S + noise

(Udell & Townsend Nice Latent Variable Models Have Log-Rank, 2017)

 \Rightarrow Different noise regime

- low noise: iterative PCA (tuning S: cross-validation, GCV)
- moderate: iterative regularized PCA (tuning σ , S)
- high noise (SNR low, S large): soft thresholding (tuning λ , σ) Implemented in R packages denoiseR (Josse, Wager, Sardy)

The imputed data set should be analysed with caution with other methods

Random Forests versus PCA

	Feat1	Feat2	Feat3	Feat4	Feat5
C1	1	1	1	1	1
C2	1	1	1	1	1
C3	2	2	2	2	2
C4	2	2	2	2	2
C5	3	3	3	3	3
C6	3	3	3	3	3
C7	4	4	4	4	4
C8	4	4	4	4	4
C9	5	5	5	5	5
C10	5	5	5	5	5
C11	6	6	6	6	6
C12	6	6	6	6	6
C13	7	7	7	7	7
C14	7	7	7	7	7
Igor	8	NA	NA	8	8
Frank	8	NA	NA	8	8
Bertrand	9	NA	NA	9	9
Alex	9	NA	NA	9	9
Yohann	10	NA	NA	10	10
Jean	10	NA	NA	10	10

Iterative Random Forests imputation

- Initial imputation: mean imputation random category Sort the variables according to the amount of missing values
- **②** Fit a RF X_i^{obs} on variables X_{-i}^{obs} and then predict X_i^{miss}
- Occurring through variables
- Repeat step 2.2 and 3 until convergence

- number of trees: 100
- number of variables randomly selected at each node \sqrt{p}
- number of iterations: 4-5

Implemented in the R package missForest (paper) missForest (Daniel J. Stekhoven, Peter Buhlmann, 2011)

	Feat1	Feat2	Feat3	Feat4	Feat5	Feat	1 Fe	at2 Feat3	Feat4	Feat5	Feat1	Feat2	Feat3	Feat4	Feat5
C1	1	1	1	1	1	1	1.0	1.00	1	1	1	1	1	1	1
C2	1	1	1	1	1	1	1.0	1.00	1	1	1	1	1	1	1
C3	2	2	2	2	2	2	2.0	2.00	2	2	2	2	2	2	2
C4	2	2	2	2	2	2	2.0	2.00	2	2	2	2	2	2	2
C5	3	3	3	3	3	3	3.0	3.00	3	3	3	3	3	3	3
C6	3	3	3	3	3	3	3.0	3.00	3	3	3	3	3	3	3
C7	4	4	4	4	4	4	4.0	4.00	4	4	4	4	4	4	4
C8	4	4	4	4	4	4	4.0	4.00	4	4	4	4	4	4	4
C9	5	5	5	5	5	5	5.0	5.00	5	5	5	5	5	5	5
C10	5	5	5	5	5	5	5.0	5.00	5	5	5	5	5	5	5
C11	6	6	6	6	6	6	6.0	6.00	6	6	6	6	6	6	6
C12	6	6	6	6	6	6	6.0	6.00	6	6	6	6	6	6	6
C13	7	7	7	7	7	7	7.0	7.00	7	7	7	7	7	7	7
C14	7	7	7	7	7	7	7.0	7.00	7	7	7	7	7	7	7
Igor	8	NA	NA	8	8	8	6.87	6.87	8	8	8	8	8	8	8
Frank	8	NA	NA	8	8	8	6.87	6.87	8	8	8	8	8	8	8
Bertrand	9	NA	NA	9	9	9	6.87	6.87	9	9	9	9	9	9	9
Alex	9	NA	NA	9	9	9	6.87	6.87	9	9	9	9	9	9	9
Yohann	10	NA	NA	10	10	10	6.87	6.87	10	10	10	10	10	10	10
Jean	10	NA	NA	10	10	10	6.87	6.87	10	10	10	10	10	10	10

Missing

missForest

imputePCA

 \Rightarrow Imputation inherits from the method: RF (computationaly costly) good for non linear relationships / PCA good for linear relationships

Outline

1. Introduction

2. Single imputation

- Single imputation methods
- Single imputation with PCA

Practice

- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

	O3	Т9	T12	T15	Ne9	Ne12	Ne15	V×9	Vx12	Vx15	03
0601	87	15.6	18.5	18.4	4	4	8	NA	-1.7101	-0.6946	84
0602	82	NA	18.4	17.7	5	5	7	NA	NA	NA	87
0603	92	NA	17.6	19.5	2	5	4	2.9544	1.8794	0.5209	82
0604	114	16.2	NA	NA	1	1	0	NA	NA	NA	92
0605	94	17.4	20.5	NA	8	8	7	-0.5	NA	-4.3301	114
0606	80	17.7	NA	18.3	NA	NA	NA	-5.6382	-5	-6	94
0607	NA	16.8	15.6	14.9	7	8	8	-4.3301	-1.8794	-3.7588	80
0610	79	14.9	17.5	18.9	5	5	4	0	-1.0419	-1.3892	NA
0611	101	NA	19.6	21.4	2	4	4	-0.766	NA	-2.2981	79
0612	NA	18.3	21.9	22.9	5	6	8	1.2856	-2.2981	-3.9392	101
0613	101	17.3	19.3	20.2	NA	NA	NA	-1.5	-1.5	-0.8682	NA
-	:	:	:	:	:	:	:	:	:	:	
0919	NA	14.8	16.3	15.9	7	7	7	-4.3301	-6.0622	-5.1962	42
0919	NA 71	14.8 15.5	16.3	15.9	7	7	6	-4.3301	-0.0622	-5.1962	42 NA
0920	96	15.5 NA	NA	17.4 NA	3	3	3	-3.9392 NA	-3.0042 NA	NA	71
0922	98	NA	NA	NA	2	2	2	4	5	4.3301	96
0923	92	14.7	17.6	18.2	1	4	6	5.1962	5.1423	3.5	98
0924	NA	13.3	17.7	17.7	NA	NA	NA	-0.9397	-0.766	-0.5	92
0925	84	13.3	17.7	17.8	3	5	6	0	-1	-1.2856	NA
0927	NA	16.2	20.8	22.1	6	5	5	-0.6946	-2	-1.3681	71
0928	99	16.9	23	22.6	NA	4	7	1.5	0.8682	0.8682	NA
0929	NA	16.9	19.8	22.1	6	5	3	-4	-3.7588	-4	99
0930	70	15.7	18.6	20.7	NA	NA	NA	0	-1.0419	-4	NA

max03 Т9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 max03v 20010601 87,000 15,600 18,500 20,471 4,000 4,000 8,000 0,695 -1,710 -0,695 84,000 20010602 82,000 18,505 20,870 21,799 5,000 5,000 7,000 -4,330 -4,000 -3,000 87,000 20010603 92,000 15,300 17,600 19,500 2,000 3,984 3,812 2,954 1,951 0,521 82,000 20010604 114.000 16.200 19.700 24.693 1.000 1.000 0.000 2.044 0.347 -0.174 92.000 20010605 94.000 18.968 20.500 20.400 5.294 5.272 5.056 -0.500 -2.954 -4.330 114.000 20010606 80.000 17.700 19.800 18.300 6.000 7.020 7.000 -5.638 -5.000 -6.000 94.000 20010607 79.000 16.800 15.600 14.900 7.000 8.000 6.556 -4.330 -1.879 -3.759 80.000 20010610 79.000 14.900 17.500 18.900 5.000 5.000 5.016 0.000 -1.042 -1.389 99.000 20010611 101,000 16,100 19,600 21,400 2,000 4,691 4,000 -0,766 -1,026 -2,298 79,000 20010612 106.000 18.300 22.494 22.900 5.000 4.627 4.495 1.286 -2.298 -3.939 101.000 20010613 101.000 17.300 19.300 20.200 7.000 7.000 3.000 -1.500 -0.868 106.000

 20010915
 69.000
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.100
 17.10

- > library(missMDA)
- > res.comp <- imputePCA(ozo[, 1:11])</pre>
- > res.comp\$comp

```
> library(missMDA)
```

> WindDirection <- ozo[,12]</pre>

```
> don <- ozo[,1:11]
```

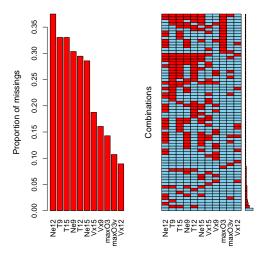
- > library(VIM)
- > res <- summary(aggr(don, sortVar = TRUE))\$combinations</pre>

```
> res[rev(order(res[, 2])),]
```

Variables sorted by number of missings: Variable Count Ne12 0.37500000 T9 0.33035714 T15 0.33035714 Ne9 0.30357143 T12 0.29464286 Ne15 0.28571429 Vx15 0.18750000 Vx9 0.16071429 max03 0.14285714 max03v 0.10714286 Vx12 0.08928571

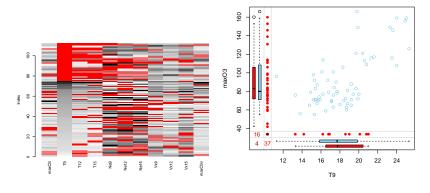
Combinations	\mathtt{Count}	Percent
0:0:0:0:0:0:0:0:0:0:0:0	13	11.6071429
0:1:1:1:0:0:0:0:0:0:0	7	6.2500000
0:0:0:0:0:1:0:0:0:0:0	5	4.4642857
0:1:0:0:0:0:0:0:0:0:0:0	4	3.5714286
0:1:0:0:1:1:1:0:0:0:0	3	2.6785714
0:0:1:0:0:0:0:0:0:0:0	3	2.6785714
0:0:0:1:0:0:0:0:0:0:0	3	2.6785714
0:0:0:0:1:1:1:0:0:0:0	3	2.6785714
0:0:0:0:0:1:0:0:0:0:1	3	2.6785714
0:1:1:1:1:0:0:0:0:0:0	2	1.7857143
0:0:0:0:1:0:0:0:0:1:0	2	1.7857143
0:0:0:0:0:0:1:1:0:0:0	2	1.7857143
0:0:0:0:0:0:1:0:0:0:0	2	1.7857143

Pattern visualization



#library(VIM)

> aggr(don, sortVar = TRUE)



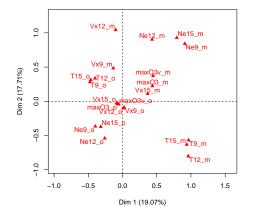
- # library(VIM)
- > matrixplot(don, sortby = 2)
- > marginplot(don[,c("T9", "max03")])

 \Rightarrow Create the missingness matrix

```
> mis.ind <- matrix("o", nrow = nrow(don), ncol = ncol(don))
> mis.ind[is.na(don)] = "m"
> dimnames(mis.ind) = dimnames(don)
> mis.ind
```

max03 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 max03v 20010601 "o" "m" "m" "m" "o" "o" "o" "o" "o" "0" "0" 20010602 "o" "0" 20010603 "o" 20010604 "o" " ~ " "0" 20010605 "o" 20010606 "o" "0" "0" 20010607 "o" "o" "o" "o" "o" "m" "o" "o" "0" "0"

Visualization with Multiple Correspondence Analysis



MCA graph of the categories

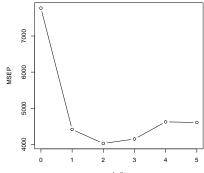
- > library(FactoMineR)
- > resMCA <- MCA(mis.ind)</pre>
- > plot(resMCA, invis = "ind", title = "MCA graph of the categories")

Imputation with PCA in practice

 \Rightarrow Step 1: Estimation of the number of dimensions (Cross Validation, Bro, 2008; GCV, Josse & Husson, 2011)

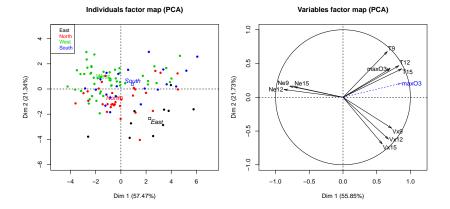
```
> library(missMDA)
> nb <- estim_ncpPCA(don, method.cv = "Kfold")
> nb$ncp #2
```

```
> plot(0:5, nb$criterion, xlab = "nb dim", ylab ="MSEP")
```



\Rightarrow Step 2: Imputation of the missing values

Cherry on the cake: PCA on incomplete data!



- > imp <- cbind.data.frame(res.comp\$completeObs, ozo[, 12])</pre>
- > res.pca <- PCA(imp, quanti.sup = 1, quali.sup = 12)</pre>
- > plot(res.pca, hab = 12, lab = "quali"); plot(res.pca, choix = "var")
- > res.pca\$ind\$coord #scores (principal components)

```
> library(softImpute)
> fit1 <- softImpute(XNA, rank = , lambda = )
> X.soft <- complete(XNA, fit1)
> library(denoiseR)
> adaNA <- imputeada(XNA, gamma = 1) ## time consuming...
> X.ada <- adaNA$completeObs</pre>
```

Glopnet data: 2494 species described by 6 quantitative variables

- LMA (leaf mass per area)
- LL (leaf lifespan)
- Amass (photosynthetic assimilation)
- Nmass (leaf nitrogen),
- Pmass (leaf phosphorus)
- Rmass (dark respiration rate)

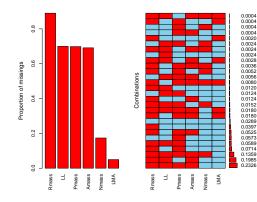
and 1 categorical variable: the biome

Reference: Wright IJ, et al. (2004) The worldwide leaf economics spectrum. Nature, 428:821. www.nature.com/nature/journal/v428/n6985/extref/nature02403-s2.xls

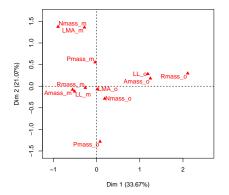
An ecological data set

```
> sum(is.na(don))/(nrow(don)*ncol(don)) # 53% of missing values
[1] 0.5338145
> dim(na.omit(don)) ## Delete species with missing values
[1] 72 6 ## only 72 remaining species!
```

- > library(VIM)
- > aggr(don,numbers=TRUE,sortVar=TRUE)



An ecological data set

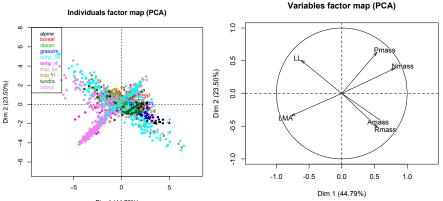


MCA graph of the categories

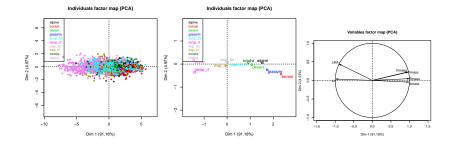
- > mis.ind <- matrix("o",nrow=nrow(don),ncol=ncol(don))</pre>
- > mis.ind[is.na(don)] <- "m"</pre>
- > dimnames(mis.ind) <- dimnames(don)</pre>
- > library(FactoMineR)
- > resMCA <- MCA(mis.ind)</pre>
- > plot(resMCA,invis="ind",title="MCA graph of the categories")

An ecological data set

What about mean imputation?



Dim 1 (44.79%)



- > library(missMDA)
- > nb <- estim_ncpPCA(don,method.cv="Kfold",nbsim=100)</pre>
- > res.comp <- imputePCA(don,ncp=2)</pre>
- > imp <- cbind.data.frame(res.comp\$completeObs,tab.init[,1:4])</pre>
- > res.pca <- PCA(imp,quanti.sup=1,quali.sup=12)</pre>
- > plot(res.pca, hab=12, lab="quali"); plot(res.pca, choix="var")
- > res.pca\$ind\$coord #scores (principal components)

Outline

- 1. Introduction
- 2. Single imputation
 - Single imputation methods
 - Single imputation with PCA
 - Practice
- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

Outline

- 1. Introduction
- 2. Single imputation
 - Single imputation methods
 - Single imputation with PCA
 - Practice
- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

Single imputation methods: Danger!

$$\begin{array}{c} \mu_y = 0 & 0.01 \\ \sigma_y = 1 & 0.5 \\ \rho = 0.6 & 0.30 \\ C I \mu_y 95 \% & \end{array}$$

Confidence interval for a mean

Let $Y = (Y_1, ..., Y_n)'$ be i.i.d. independent Gaussian random with expectation μ_y and variance $\sigma_y^2 > 0$.

- The empirical mean $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$
- $\bar{Y} \sim \mathcal{N}(\mu_y, \sigma_y^2/n)$
- A confidence interval for μ

$$\mathbb{P}\left(\bar{Y} - \frac{\sigma_y}{\sqrt{n}} z_{1-\alpha/2} \le \mu \le \bar{Y} + \frac{\sigma_y}{\sqrt{n}} z_{1-\alpha/2}\right) = 1 - \alpha$$

Confidence interval for a mean

Let $Y = (Y_1, ..., Y_n)'$ be i.i.d. independent Gaussian random with expectation μ_y and variance $\sigma_y^2 > 0$.

- The empirical mean $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$
- $\bar{Y} \sim \mathcal{N}(\mu_y, \sigma_y^2/n)$
- A confidence interval for μ

$$\mathbb{P}\left(\bar{Y} - \frac{\sigma_y}{\sqrt{n}} z_{1-\alpha/2} \le \mu \le \bar{Y} + \frac{\sigma_y}{\sqrt{n}} z_{1-\alpha/2}\right) = 1 - \alpha$$

Variance unknown:

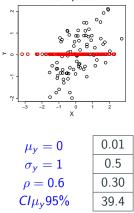
$$\frac{\sqrt{n}}{\widehat{\sigma_{y}}}\left(\bar{Y}-\mu_{y}\right)\sim T(n-1)$$

$$\left[\bar{y} - \frac{\widehat{\sigma}_y}{\sqrt{n}} q t_{1-\alpha/2} (n-1) , \ \bar{y} + \frac{\widehat{\sigma}_y}{\sqrt{n}} q t_{1-\alpha/2} (n-1)\right]$$

- Generate bivariate Gaussian data ($\mu_y = 0, \sigma_y = 1, \rho = 0.6$)
- Put missing values on y
- Imput missing entries
- Compute the confidence interval of μ_y count if the true value $\mu_y = 0$ is in the confidence interval
- Repeat the steps 10000 times
- Give the coverage

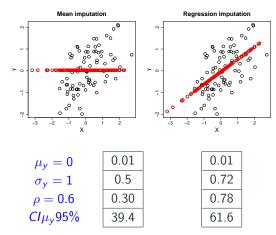
$$\left[\bar{y}-qt_{n-1}\frac{\hat{\sigma}_{y}}{\sqrt{n}};\bar{u}-qt_{n-1}\frac{\hat{\sigma}_{y}}{\sqrt{n}}\right]$$

Mean imputation



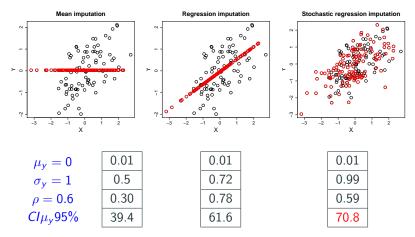
The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

 $\left[\bar{y} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}}; \bar{u} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}} \right]$



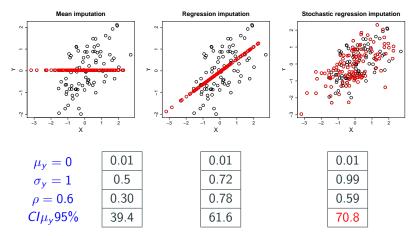
The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

 $\left[\bar{y} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}}; \bar{u} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}} \right]$



The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

 $\left| \bar{y} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}}; \bar{u} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}} \right|$



The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983) \Rightarrow Standard errors of the parameters ($\hat{\sigma}_{\hat{\mu}_{y}}$) calculated from the imputed data set are underectimated

Classical confidence interval for
$$\mu_y \left[\bar{y} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}}; \bar{Y} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}} \right]$$

Asymptotic variance with missing values (Little & Rubin, p140):

$$\frac{\hat{\sigma}_y^2}{n_{obs}} \left(1 - \hat{\rho}^2 \frac{n - n_{obs}}{n_{obs}}\right) = \frac{\hat{\sigma}_y^2}{n} \left(1 + \frac{n - n_{obs}}{n_{obs}} (1 - \hat{\rho}^2)\right)$$

 \Rightarrow When the $\rho=$ 1, we trust the prediction and the coverage given by stochastic regression is OK.

 \Rightarrow Coverage of single imputation is too low: need to take into account the uncertainty associated to the predictions.

Single imputation: Underestimation of the variability

 $\Rightarrow \mathsf{Incomplete} \ \mathsf{Traumabase}$

X_1	X_2	X_3	 Y
NA	20	10	 shock
-6	45	NA	 shock
0	NA	30	 no shock
NA	32	35	 shock
-2	NA	12	 no shock
1	63	40	 shock

Single imputation: Underestimation of the variability

\Rightarrow	Incomplete	Traumabase
---------------	------------	------------

<i>X</i> ₁	X_2	X_3	 Y
NA	20	10	 shock
-6	45	NA	 shock
0	NA	30	 no shock
NA	32	35	 shock
-2	NA	12	 no shock
1	63	40	 shock

$\Rightarrow \mathsf{Completed} \ \mathsf{Traumabase}$

X_1	X_2	X_3	 Y
3	20	10	 shock
-6	45	6	 shock
0	4	30	 no shock
-4	32	35	 shock
-2	75	12	 no shock
1	63	40	 shock

Single imputation: Underestimation of the variability

\Rightarrow	Incomplete	Traumabase
---------------	------------	------------

X_1	X_2	X_3	 Y
NA	20	10	 shock
-6	45	NA	 shock
0	NA	30	 no shock
NA	32	35	 shock
-2	NA	12	 no shock
1	63	40	 shock

 $\Rightarrow \mathsf{Completed} \ \mathsf{Traumabase}$

X_1	X_2	X_3	 Y
3	20	10	 shock
-6	45	6	 shock
0	4	30	 no shock
-4	32	35	 shock
-2	75	12	 no shock
1	63	40	 shock

A single value can't reflect the uncertainty of prediction Multiple impute 1) Generate M plausible values for each missing value

X_1	X_2	X_3	Y
3	20	10	s
-6	45	6	s
0	4	30	no s
-4	32	35	s
-2	75	12	no s
1	63	40	s

X_1	X_2	X_3	Y
-7	20	10	s
-6	45	9	s
0	12	30	no s
13	32	35	s
-2	10	12	no s
1	63	40	s

X_1	X_2	X_3	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
-2	20	12	no s
1	63	40	s

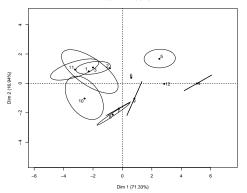
library(mice); mice(traumadata)
library(missMDA); MIPCA(traumadata)

Visualization of the imputed values

X_1	<i>X</i> ₂	X_3	Y
3	20	10	s
-6	45	6	s
0	4	30	no s
-4	32	35	s
-2	15	12	no s
1	63	40	s

X	1 X ₂	<i>X</i> 3	Y
-7	20	10	s
-6	5 45	9	s
0	12	30	no s
13	3 32	35	s
-2	2 10	12	no s
1	63	40	s

<i>x</i> ₁	<i>x</i> ₂	X3	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
-2	20	12	no s
1	63	40	s



library(missMDA)
MIPCA(traumadata)

Percentage of NA?

1) Generate M plausible values for each missing value

<i>X</i> ₁	X2	<i>X</i> 3	Y
3	20	10	s
-6	45	6	s
0	4	30	no s
-4	32	35	s
1	63	40	s
-2	15	12	no s

X_1	X2	X_3	Y
-7	20	10	s
-6	45	9	s
0	12	30	no s
13	32	35	s
1	63	40	s
-2	10	12	no s

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
1	63	40	s
-2	20	12	no s

2) Perform the analysis on each imputed data set: $\hat{\beta}_m$, $\widehat{Var}\left(\hat{\beta}_m\right)$

3) Combine the results (Rubin's rules):

$$\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m$$
$$T = \frac{1}{M} \sum_{m=1}^{M} \widehat{Var} \left(\hat{\beta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_{m=1}^{M} \left(\hat{\beta}_m - \hat{\beta} \right)^2$$

imp.mice <- mice(traumadata)
lm.mice.out <- with(imp.mice, glm(Y ~ ., family = "binomial"))</pre>

 \Rightarrow Variability of missing values taken into account

Outline

- 1. Introduction
- 2. Single imputation
 - Single imputation methods
 - Single imputation with PCA
 - Practice
- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

• Generating *M* imputed data sets

First idea: several stochastic regression for m = 1, ..., M, draw y_i from the predictive $\mathcal{N}(x_i\hat{\beta}, \hat{\sigma}^2)$

- Performing the analysis on each imputed data set
- **\bigcirc** Combining: variance = within + between imputation variance

	M = 1	<i>M</i> = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y = 1$	0.99	0.99
ho= 0.6	0.59	0.59
${\it CI}\mu_y$ 95%	70.8	81.8

• Generating *M* imputed data sets

First idea: several stochastic regression for m = 1, ..., M, draw y_i from the predictive $\mathcal{N}(x_i \hat{\beta}, \hat{\sigma}^2)$

- Performing the analysis on each imputed data set
- **③** Combining: variance = within + between imputation variance

	M = 1	<i>M</i> = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y = 1$	0.99	0.99
ho= 0.6	0.59	0.59
${\it CI}\mu_y$ 95%	70.8	81.8

 \Rightarrow Variability of the parameters is missing: "improper" imputation

• Generating *M* imputed data sets

First idea: several stochastic regression for m = 1, ..., M, draw y_i from the predictive $\mathcal{N}(x_i\hat{\beta}, \hat{\sigma}^2)$

- Performing the analysis on each imputed data set
- **③** Combining: variance = within + between imputation variance

	M = 1	<i>M</i> = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y=1$	0.99	0.99
ho= 0.6	0.59	0.59
${\it CI}\mu_y$ 95%	70.8	81.8

 $\Rightarrow Variability of the parameters is missing: "improper" imputation$ $<math display="block">\Rightarrow Prediction variance = estimation variance plus noise$

$$y_{n+1} = x'_{n+1}\beta + \varepsilon_{n+1}$$
$$\hat{y}_{n+1} = x'_{n+1}\hat{\beta}$$
$$\hat{\beta} = (X'X)^{-1}X'Y$$

$$V[\hat{y}_{n+1} - y_{n+1}] = V[x'_{n+1}(\hat{\beta} - \beta) - \varepsilon_{n+1}]$$

= $x'_{n+1}V(\hat{\beta} - \beta)x_{n+1} + \sigma^2]$
= $\hat{\sigma}^2 (x'_{n+1}(X'X)^{-1}x_{n+1} + 1)$

CI for the prediction

$$\left[x'_{n+1}\hat{\beta} + -t_{n-p}(1-\alpha/2)\hat{\sigma}\sqrt{(x'_{n+1}(X'X)^{-1}x_{n+1}+1)}\right]$$

 \Rightarrow Proper multiple imputation with $y_i = x_i\beta + \varepsilon_i$

• Variability of the parameters, M plausible: $(\hat{\beta})^1, ..., (\hat{\beta})^M$

 $\Rightarrow \text{Bootstrap} \\ \Rightarrow \text{Posterior distribution: Data Augmentation} \quad {}_{\text{(Tanner & Wong, 1987)}}$

Noise: for m = 1, ..., M, missing values y^m_i are imputed by drawing from the predictive distribution N(x_iβ^m, (ô²)^m)

 \Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values)

Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors

• Generating *M* imputed data sets: variance of prediction

|--|

- Performing the analysis on each imputed data set
- **\bigcirc** Combining: variance = within + between imputation variance

$$\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m \ T = \frac{1}{M} \sum \widehat{Var} \left(\hat{\beta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum \left(\hat{\beta}_m - \hat{\beta} \right)^2$$

 \Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values)

Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors

 $\bullet Generating M imputed data sets: variance of prediction$

1) Variance of estimation of the parameters + 2) Noise

- Performing the analysis on each imputed data set
- Some combining: variance = within + between imputation variance

$$\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m \ T = \frac{1}{M} \sum \widehat{Var} \left(\hat{\beta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum \left(\hat{\beta}_m - \hat{\beta} \right)^2$$

 \Rightarrow Hypothesis $x_i \sim \mathcal{N}(\mu, \Sigma)$

Algorithm Expectation Maximization Bootstrap:

1 Bootstrap rows: X^1, \ldots, X^M EM algorithm: $(\hat{\mu}^1, \hat{\Sigma}^1), \dots, (\hat{\mu}^M, \hat{\Sigma}^M)$ **2** Imputation: x_{ij}^m drawn from $\mathcal{N}\left(\hat{\mu}^m, \hat{\Sigma}^m\right)$

Easy to parallelized. Implemented in Amelia (website)

Amelia Earhart

James Honaker Gary King Matt Blackwell

Fully conditional modeling

- \Rightarrow Hypothesis: one model/variable
 - Initial imputation: mean imputation
 For a variable *j*
 - 2.2 Imputation of the missing values in variable *j* with a model of X_j on the other X_{-j}: stochastic regression x_{ij} from N ((x_{i,-j})'β̂^{-j}, ô^{-j})
 Ocycling through variables

- \Rightarrow Iteratively refine the imputation.
- \Rightarrow With continuous variables and a regression/variable: $\mathcal{N}\left(\mu,\Sigma
 ight)$

Implemented in mice (website) and Python

"There is no clear-cut method for determining whether the MICE algorithm has converged"

Stef van Buuren

Fully conditional modeling

- \Rightarrow Hypothesis: one model/variable
 - Initial imputation: mean imputation
 - Por a variable j
 - 2.1 $(\hat{\beta}^{-j}, \hat{\sigma}^{-j})$ drawn from a Bootstrap: $(\hat{\beta}^{-j}, \hat{\sigma}^{-j})^1, ..., (\hat{\beta}^{-j}, \hat{\sigma}^{-j})^M$
 - 2.2 Imputation of the missing values in variable j with a model of X_j on the other X_{-j} : stochastic regression x_{ij} from $\mathcal{N}\left((x_{i,-j})'\hat{\beta}^{-j}, \hat{\sigma}^{-j}\right)$
 - Cycling through variables

Get M imputed data

- \Rightarrow Iteratively refine the imputation.
- \Rightarrow With continuous variables and a regression/variable: $\mathcal{N}\left(\mu,\Sigma
 ight)$

Implemented in mice (website) and Python

"There is no clear-cut method for determining whether the MICE algorithm has converged"

Stef van Buuren

Monte Carlo and Quasi-Monte Carlo Methods 2012, page 353

Monte Carlo statistical methods (Robert, Christian and Casella, George, 2004) (page 344)

The EM algorithm and extensions (McLachlan, Geoffrey J and Krishnan, Thriyambakam, 1998) (page 243) Example 6.7: Why Does Gibbs Sampling Work?

Joint / Conditional modeling

 \Rightarrow Both seen imputed values are drawn from a Joint distribution (even if joint does not exist)

- \Rightarrow Conditional modeling takes the lead?
 - Flexible: one model/variable. Easy to deal with interactions and variables of different nature (binary, ordinal, categorical...)
 - Many statistical models are conditional models!
 - Tailor to your data
 - Appears to work quite well in practice
- \Rightarrow Drawbacks: one model/variable... tedious...

Joint / Conditional modeling

 \Rightarrow Both seen imputed values are drawn from a Joint distribution (even if joint does not exist)

- \Rightarrow Conditional modeling takes the lead?
 - Flexible: one model/variable. Easy to deal with interactions and variables of different nature (binary, ordinal, categorical...)
 - Many statistical models are conditional models!
 - Tailor to your data
 - Appears to work quite well in practice
- \Rightarrow Drawbacks: one model/variable... tedious...
- \Rightarrow What to do with high correlation or when n < p?
 - JM shrinks the covariance $\Sigma + k\mathbb{I}$ (selection of k?)
 - $\bullet~$ CM: ridge regression or predictors selection/variable \Rightarrow a lot of tuning ... not so easy ...

Multiple imputation with Bootstrap PCA

$$\mathbf{x}_{ij} = \mu_{ij} + \varepsilon_{ij} = \sum_{s=1}^{S} \sqrt{\tilde{\lambda}_s} \tilde{u}_{is} \tilde{v}_{js} + \varepsilon_{ij}$$
, $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$

• Variability of the parameters, M plausible: $(\hat{\mu}_{ij})^1, ..., (\hat{\mu}_{ij})^M$

2 Noise: for m = 1, ..., M, missing values x_{ij}^m drawn $\mathcal{N}(\hat{\mu}_{ij}^m, \hat{\sigma}^2)$

Implemented in missMDA (website)

François Husson

 \Rightarrow Good estimates of the parameters and their variance from an incomplete data (coverage close to 0.95) The variability due to missing values is well taken into account

Amelia & mice have difficulties with large correlations or n < pmissMDA does not but requires a tuning parameter: number of dim.

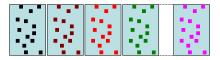
Amelia & missMDA are based on linear relationships mice is more flexible (one model per variable)

MI based on PCA works in a large range of configuration, n < p, n > p strong or weak relationships, low or high percentage of missing values

The simulated data $\mathcal{N}(\mu, \Sigma)$

- 2 underlying dimensions (control k)
- n (30,200), p (6,60), ρ (0.3,0.8), %NA (10,30)

 \Rightarrow Imputation with B = 100 imputed tables with PCA, JM, CM



Estimate (analysis model): $\hat{\theta}_b$, $\widehat{Var}\left(\hat{\theta}_b\right)$: $\theta_1 = \mathbb{E}\left[Y\right]$, $\theta_2 = \beta_1$ Rubin: $\hat{\theta} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}_b$, $T = \frac{1}{B} \sum_b \widehat{Var}\left(\hat{\theta}_b\right) + \frac{1}{B-1} \sum_b \left(\hat{\theta}_b - \hat{\theta}\right)^2$

 \Rightarrow Bias, CI width, coverage - 1000 simulations

		parar	neters		confide	nce interva			coverage	
	п	р	ρ	%	Joint	Cond	MIPCA	Joint	Cond	MIPCA
1	30	6	0.3	0.1	0.803	0.805	0.781	0.955	0.953	0.950
2	30	6	0.3	0.3		1.010	0.898		0.971	0.949
3	30	6	0.9	0.1	0.763	0.759	0.756	0.952	0.95	0.949
4	30	6	0.9	0.3		0.818	0.783		0.965	0.953
5	30	60	0.3	0.1			0.775			0.955
6	30	60	0.3	0.3			0.864			0.952
7	30	60	0.9	0.1			0.742			0.953
8	30	60	0.9	0.3			0.759			0.954
9	200	6	0.3	0.1	0.291	0.294	0.292	0.947	0.947	0.946
10	200	6	0.3	0.3	0.328	0.334	0.325	0.954	0.959	0.952
11	200	6	0.9	0.1	0.281	0.281	0.281	0.953	0.95	0.952
12	200	6	0.9	0.3	0.288	0.289	0.288	0.948	0.951	0.951
13	200	60	0.3	0.1		0.304	0.289		0.957	0.945
14	200	60	0.3	0.3		0.384	0.313		0.981	0.958
15	200	60	0.9	0.1		0.282	0.279		0.951	0.948
16	200	60	0.9	0.3		0.296	0.283		0.958	0.952

 \Rightarrow Good estimates of θ and coverage \approx 0.95: variability due to missing is taken into account

 \Rightarrow PCA: small - large n/p; strong - weak relation; low-high % NA

Outline

- 1. Introduction
- 2. Single imputation
 - Single imputation methods
 - Single imputation with PCA
 - Practice

3. Multiple imputation

- Underestimation of the variability Definition of MI
- MI based on normal distribution and low rank models

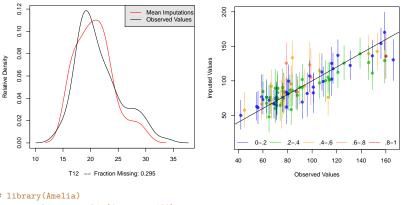
Practice

- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

```
\Rightarrow Step 1: Generate M imputed data sets
```

```
> library(Amelia)
> res.amelia <- amelia(don, m = 100)
> library(mice)
> res.mice <- mice(don, m = 100, defaultMethod = "norm.boot")
> library(missMDA)
> res.MIPCA <- MIPCA(don, ncp = 2, nboot = 100)
> res.MIPCA$res.MI
```

\Rightarrow Step 2: visualization



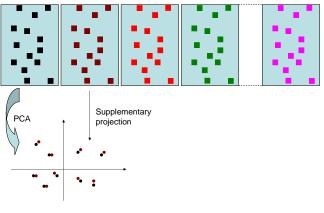
Observed and Imputed values of T12

Observed versus Imputed Values of maxO3

- # library(Amelia)
- > res.amelia <- amelia(don, m = 100)</pre>
- > compare.density(res.amelia, var = "T12")
- > overimpute(res.amelia, var = "max03")

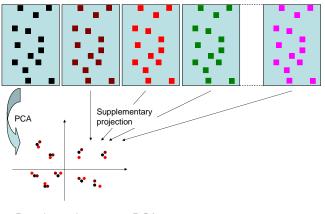
library(missMDA) res.over<-Overimpute(res.MIPCA)</pre>

- $\Rightarrow \mathsf{Step } 2: \mathsf{ visualization}$
- \Rightarrow Individuals position (and variables) with other predictions



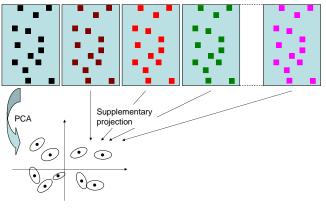
 $\begin{array}{l} \mbox{Regularized iterative PCA} \\ \Rightarrow \mbox{reference configuration} \end{array}$

- $\Rightarrow \mathsf{Step } 2: \mathsf{ visualization}$
- \Rightarrow Individuals position (and variables) with other predictions

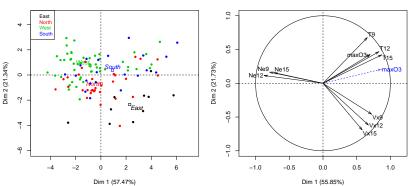


Regularized iterative PCA \Rightarrow reference configuration

- \Rightarrow Step 2: visualization
- \Rightarrow Individuals position (and variables) with other predictions



Regularized iterative PCA \Rightarrow reference configuration

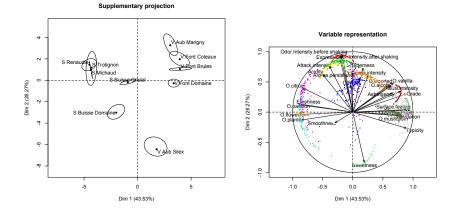


Variables factor map (PCA)

Individuals factor map (PCA)

- > imp <- cbind.data.frame(res.comp\$completeObs, ozo[, 12])</pre>
- > res.pca <- PCA(imp,quanti.sup = 1, quali.sup = 12)</pre>
- > plot(res.pca, hab =12, lab = "quali"); plot(res.pca, choix = "var")
- > res.pca\$ind\$coord #scores (principal components)

- \Rightarrow Step 2: visualization
- > res.MIPCA <- MIPCA(don, ncp = 2)
 > plot(res.MIPCA, choice = "ind.supp"); plot(res.MIPCA, choice = "var")



 \Rightarrow Step 3. Regression on each table and pool the results

$$\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m$$
$$T = \frac{1}{M} \sum_m \widehat{Var} \left(\hat{\beta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_m \left(\hat{\beta}_m - \hat{\beta} \right)^2$$

> library(mice)
> res.mice <- mice(don, m = 100)
> imp.micerf <- mice(don, m = 100, defaultMethod = "rf")
> lm.mice.out <- with(res.mice, lm(max03 ~ T9+T12+T15+Ne9+...+Vx15+max03v))
> pool.mice <- pool(lm.mice.out)
</pre>

> summary	(pool	L.mice))
-----------	-------	---------	---

	est	se	t	df	Pr(> t)	lo 95	hi 95	nmis	fmi	lambda
(Intercept)	19.31	16.30	1.18	50.48	0.24	-13.43	52.05	NA	0.46	0.44
Т9	-0.88	2.25	-0.39	26.43	0.70	-5.50	3.75	37	0.71	0.69
T12	3.29	2.38	1.38	27.54	0.18	-1.59	8.18	33	0.70	0.68
Vx15	0.23	1.33	0.17	39.00	0.87	-2.47	2.93	21	0.57	0.55
max03v	0.36	0.10	3.65	46.03	0.00	0.16	0.56	12	0.50	0.48

Outline

- 1. Introduction
- 2. Single imputation
 - Single imputation methods
 - Single imputation with PCA
 - Practice
- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

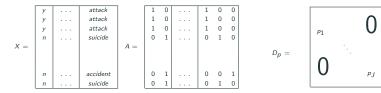
Survey data

region	sex	age	year	edu	drunk	alcohol	glasses
Ile de France	:8120 F:29776	18_25: 6920	2005:27907	E1:12684	0 :44237	<1/m :12889	0 : 2812
Rhone Alpes	:5421 M:23165	26_34: 9401	2010:25034	E2:23521	1-2 : 4952	0 : 6133	0-2:37867
Provence Alpes	:4116	35_44:10899	1	E3:6563	10-19: 839	1-2/m: 7583	10+: 590
Nord Pas de Calais	:3819	45_54: 9505	i i i i i i i i i i i i i i i i i i i	E4:10100	20-29: 212	1-2/w: 9526	3-4: 9401
Pays de Loire	:3152	55_64: 9503		NA:73	3-5 : 1908	3-4/w: 6815	5-6: 1795
Bretagne	:3038	65_+ : 6713	1		30+ : 404	5-6/w: 3402	7-9: 391
(Other)	:25275				6-9 : 389	7/w : 6593	NA: 85
binge	Pbsleep		Tabac				
<2/m:10323	Never:20605		Frequent : 93	176			
0 :34345	Often: 1017	2	Never :390	080			
1/m : 6018	Rare :22134		Occasional: 45	588			
1/w : 1800	NA: 30		NA: 97				
7/w : 374							
NA : 81							

INPES http://www.inpes.sante.fr

Principal components method: Multiple Correpondence Analysis Single imputation based on MCA for categorical data

Multiple Correspondence Analysis (MCA)



For a category *c*, the frequency of the category: $p_c = n_c/n$. A SVD on weighted matrix: $Z = \frac{1}{\sqrt{mn}} (A - 1p^T) D_p^{-1/2} = U \Lambda V'$

The PC ($F = U\Lambda^{1/2}$) satisfies: $\arg \max_{F_s \in \mathbb{R}^n} \frac{1}{m} \sum_{j=1}^m \eta^2(F_s, X_j)$ $\eta^2(F, X_j) = \frac{\sum_{c=1}^{C_j} n_c(F_{.c} - F_{..})^2}{\sum_{i=1}^n \sum_{c=1}^{C_j} (F_{ic})^2} = \frac{\text{RSS between}}{\text{RSS tot}}$

Benzecri, 1973 : "In data analysis the mathematical problems reduces to computing eigenvectors; all the science (the art) is in finding the right matrix to diagonalize"

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	NA	v
ind 1232	с	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	NA	NA	1	0	
ind 2	NA	NA	NA	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	NA	NA	
ind 1232	0	0	1	0	1	0	1	

Initialization: imputation of the indicator matrix (proportion)

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	NA	v
ind 1232	с	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.41	0.59	1	0	
ind 2	0.20	0.30	0.50	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.27	0.78	
ind 1232	0	0	1	0	1	0	1	

- Initialization: imputation of the indicator matrix (proportion)
- iterate until convergence
 - (a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	NA	v
ind 1232	с	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.41	0.59	1	0	
ind 2	0.20	0.30	0.50	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.27	0.78	
ind 1232	0	0	1	0	1	0	1	

Initialization: imputation of the indicator matrix (proportion)

- iterate until convergence
 - (a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$
 - (b) imputation with the fitted matrix $\hat{\mu} = U_S \Lambda_S^{1/2} V'_S$

	114	1.0	1.00	1111
	V1	V2	٧3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	NA	v
ind 1232	с	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.65	0.35	1	0	
ind 2	0.11	0.20	0.69	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.30	0.40	
ind 1232	0	0	1	0	1	0	1	

() initialization: imputation of the indicator matrix (proportion)

- iterate until convergence
 - (a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$
 - (b) imputation with the fitted matrix $\hat{\mu} = U_S \Lambda_S^{1/2} V_S'$
 - (c) column margins are updated

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	NA	v
ind 1232	с	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.65	0.35	1	0	
ind 2	0.11	0.20	0.69	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.30	0.40	
ind 1232	0	0	1	0	1	0	1	

Initialization: imputation of the indicator matrix (proportion)

iterate until convergence

- (a) estimation: MCA on the completed data \rightarrow U,Λ,V
- (b) imputation with the fitted matrix $\hat{\mu} = U_S \Lambda_S^{1/2} V'_S$
- (c) column margins are updated

	V1	V2	V3	 V14		V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	а	NA	g	 u	ind 1	1	0	0	0.71	0.29	1	0	
ind 2	NA	f	g	u	ind 2	0.12	0.29	0.59	0	1	1	0	
ind 3	а	е	h	v	ind 3	1	0	0	1	0	0	1	
ind 4	а	е	h	v	ind 4	1	0	0	1	0	0	1	
ind 5	b	f	h	u	ind 5	0	1	0	0	1	0	1	
ind 6	с	f	h	u	ind 6	0	0	1	0	1	0	1	
ind 7	с	f	NA	v	ind 7	0	0	1	0	1	0.37	0.63	
ind 1232	с	f	h	v	ind 1232	0	0	1	0	1	0	1	

 \Rightarrow the imputed values can be seen as degree of membership

Initialization: imputation of the indicator matrix (proportion)

iterate until convergence

- (a) estimation: MCA on the completed data \rightarrow U, A, V
- (b) imputation with the fitted matrix $\hat{\mu} = U_S \Lambda_S^{1/2} V_S'$
- (c) column margins are updated

	V1	V2	V3	 V14
ind 1	а	е	g	 u
ind 2	С	f	g	u
ind 3	C a	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	g	v
ind 1232	С	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.71	0.29	1	0	
ind 2	0.12	0.29	0.59	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.37	0.63	
ind 1232	0	0	1	0	1	0	1	

Two ways to obtain categories: majority or draw

• Variability of the parameters: M sets $(U_{n \times S}, \Lambda_{S \times S}, V_{m \times S}^{\top})$ using a non-parametric bootstrap $\hat{\chi}_1$ $\hat{\chi}_2$ $\hat{\chi}_M$

- [1	0	 1	0	0	1	0	 1	0	0]	1	0	 1	0
	1	0	 1	0	0	1	0	 1	0	0		1	0	 1	0
	1	0	 0.01	0.80	0.19	1	0	 0.60	0.2	0.20		1	0	 0.11	0.74
	0.25	0.75	0	0	1	0.26	0.74	0	0	1		0.20	0.80	0	0
	0	1	0	0	1	0	1	0	0	1		0	1	0	0

O Categories drawn from multinomial disribution using the values in $\begin{pmatrix} \hat{X}_m \end{pmatrix}_{1 \leq m \leq M}$

У	 Attack	у	 Attack	У	 Attack
У	 Attack	у	 Attack	у	 Attack
У	 Suicide	у	 Attack	 у	 Suicide
n	 Accident	n	 Accident	n	 Accident
n	 S	n	 В	n	 Suicide

library(missMDA); MIMCA()

Multiple imputation for categorical data

- \Rightarrow Joint modeling:
 - Log-linear model (Schafer, 1997) (cat): pb many levels
 - Latent class models (Vermunt, 2014) nonparametric Bayesian (Si & Reiter, 2014, Murray & Reiter, 2016) (MixedDataImpute, NPBayesImpute, NestedCategBayesImpute)
- \Rightarrow Conditional model: logistic, multinomial logit, forests (mice)
- \Rightarrow MIMCA provides valid inference (ex. logistic reg with missing) applied to data of various size (many levels, rare levels)

Time (seconds)	Titanic	Galetas	Income
rows-variables-levels	(2000 - 4 - 4)	(1000 - 4 -11)	(6000 - 14 - 9)
MIMCA	2.750	8.972	58.729
Loglinear	0.740	4.597	NA
Nonparametric bayes	10.854	17.414	143.652
Cond logistic	4.781	38.016	881.188
Cond forests	265.771	112.987	6329.514

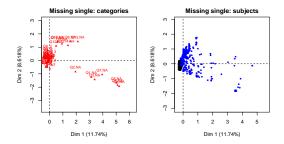
 \bullet 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents

In missMDA (Youtube)

```
data(vnf)
summary(vnf)
MCA(vnf)
#1) select the number of components
nb < - estim ncpMCA(vnf, ncp.max = 5) #Time-consuming, nb = 4
#2) Impute the indicator matrix
res.impute <- imputeMCA(vnf, ncp = 4)</pre>
res.impute$tab.disi
res.impute$comp
summary(res.impute$comp)
# MCA on the incomplete data vnf
res.mca <- MCA(vnf, tab.disi = res.impute$tab.disi)</pre>
plot(res.mca, invisible=c("var"))
plot(res.mca,invisible=c("ind"),autoLab="yes", selectMod="cos2 5", cex = 0.6)
```

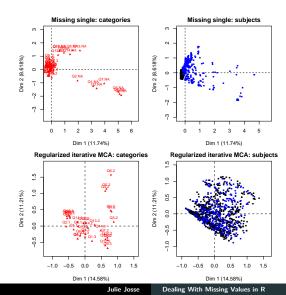
Categorical imputation in practice

 \bullet 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents



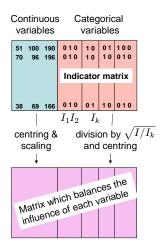
Categorical imputation in practice

 \bullet 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents



Principal component method for mixed data (complete)

Factorial Analysis Mixed Data FAMD (Escofier, 1979), PCAMIX (Kiers, 1991)



A PCA is performed on the weighted matrix with standard deviation for continuous variable and square root of the proportion for categorical variables

Benzecri, 1973 : "All in all, doing a data analysis, in good mathematics, is simply searching eigenvectors; all the science (or the art) of it is just to find the right matrix to diagonalize"

• The distance between observations is:

$$d^2(i,l) = \sum_{j=1}^{p_{cont}} rac{1}{\sigma_j} (x_{ij} - x_{lj})^2 + \sum_{q=1}^{Q_{cat}} \sum_{k=1}^{K_q} rac{1}{l_{k_q}} (x_{ik_q} - x_{lk_q})^2$$

• The principal component F_s maximises:

$$\sum_{j=1}^{p_{cont}} r^2(F_s, x_{.j}) + \sum_{q=1}^{Q_{cot}} \eta^2(F_s, x_{.q})$$

Iterative FAMD algorithm

- Initialization: imputation mean (continuous) and proportion (dummy)
- Iterate until convergence
 - (a) estimation: FAMD on the completed data $\Rightarrow U, \Lambda, V$
 - (b) imputation of the missing values with the fitted matrix $\hat{X} = U_S \Lambda_S^{1/2} V_S'$
 - (c) means, standard deviations and column margins are updated

age NA 70 NA 62	weight 100 96 104 68	190 186 194	alcohol NA 1-2 gl/d No 1-2 gl/d	sex M M W M	snore to yes NA no no	obacco no <=1 NA <=1		NA 70 NA 62	96 104	190 186 194 165	NA 0 1 0	NA 1 0 1	NA 0 0 0	1	0 0 1 0	0 <mark>NA</mark> 1 1	1 NA 0 0	1 0 NA 0	0 1 NA 1	0 0 NA 0
													imp	out	еA	١FD	M			
												1								
age 51 70	weight 100 96	190	alcohol <mark>1-2 gl/d</mark> 1-2 gl/d	sex M M	snore to yes no	obacco no <=1]	51 70	100 96	190 186	0.2	0.7 1		1	0	0	1	1	0	0

 \Rightarrow Imputed values can be seen as degrees of membership

Several data sets

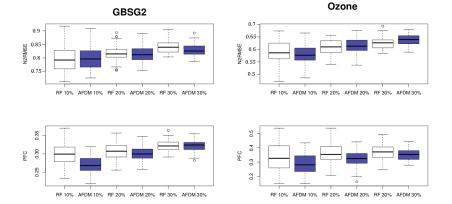
- Relationships between variables
- Number of categories
- percentage of missing values (10%,20%,30%)

Criteria:

- for continuous data: RMSE
- for categorical data: proportion of falsely classified entries

Comparison on real data sets

Imputations obtained with random forest & FAMD algorithm



Imputations with PC methods are good:

- for strong linear relationships
- for categorical variables
- especially for rare categories (weights of MCA)
- \Rightarrow Number of components S?? Cross-Validation (GCV)

Imputations with RF are good:

- for strong non-linear relationships between continuous variables
- when there are interactions
- \Rightarrow No tunning parameters?

Rq: categorical data improve the imputation on continuous data and continuous data improve the imputation on categorical data

Summary

Imputations with PC methods are good:

- for strong linear relationships
- for categorical variables
- especially for rare categories (weights of MCA)
- \Rightarrow Number of components S?? Cross-Validation (GCV)

Imputations with RF are good:

- for strong non-linear relationships between continuous variables (cutting continuous variables into categories)
- when there are interactions (creating interactions)
- \Rightarrow No tunning parameters?

Rq: categorical data improve the imputation on continuous data and continuous data improve the imputation on categorical data

```
> library(missMDA)
```

- > res.ncp <- estim_ncpFAMD(ozo)</pre>
- > res.famd <-imputeFAMD(ozo, ncp = 2)</pre>
- > res.famd\$completeObs

```
> library(missForest)
```

```
> res.rf <- missForest(ozo)</pre>
```

```
> res.rf$ximp
```

Multi-blocks data set

• Sensory analysis: products described by people and by physico-chemical measurements

(each judge can't taste more than 8 products: Planned missing products per judge, experimental design: BIB)

• Biology. DNA/RNA (samples without expression data)

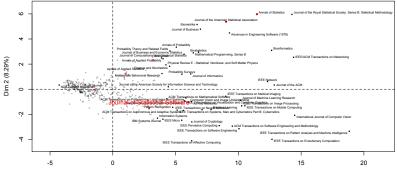
Continuous / categorical / contingency sets of variables

- \Rightarrow Missing rows per subtable
- \Rightarrow Regularized iterative Multiple Factor Analysis (Husson & Josse, 2013)

journalmetrics.com provides 27000 journals/ 15 years of metrics.

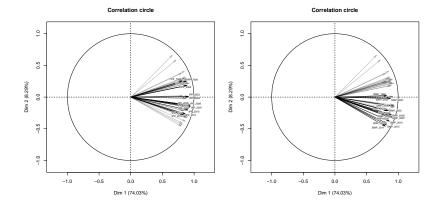
443 journals (Computer Science, Statistics, Probability and Mathematics). 45 metrics, some may be NA, 15 years by 3 types of measures:

- IPP Impact Per Publication (like the ISI impact factor but for 3 (rather than 2) years.
- SNIP Source Normalized Impact Per Paper: Tries to weight by the number of citations per subject field to adjust for different citation cultures.
- SJR SCImago Journal Rank: Tries to capture average prestige per publication.

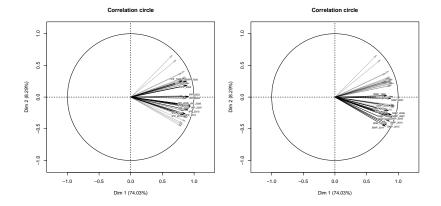


Dim 1 (74.03%)

MFA with missing values



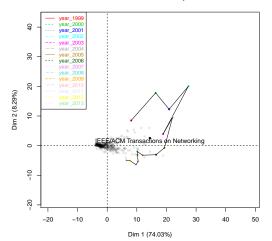
MFA with missing values



MFA with missing values

Rows: 47000 journals / Groups: 15 years of data/ Variables: 3 scores each year. Many missing...

ACM Transactions on Networking trajectory.pdf



Individual factor map

Julie Josse Dealing With Missing Values in R

```
> librarv(denoiseR)
> library(missMDA)
> data(impactfactor)
> year=NULL; for (i in 1: 15) year= c(year, seq(i,45,15))
> res.imp <- imputeMFA(impactfactor, group = rep(3, 15), type = rep("s", 15))</pre>
##
> res.mfa <-MFA(res.imp$completeObs, group=rep(3,15), type=rep("s",15),</pre>
name.group=paste("year", 1999:2013,sep=" "),graph=F)
plot(res.mfa, choix = "ind", select = "contrib 15", habillage = "group", cex = 0.7)
points(res.mfa$ind$coord[c("Journal of Statistical Software",
"Journal of the American Statistical Association", "Annals of Statistics"),
1:2], col=2, cex=0.6)
text(res.mfa$ind$coord[c("Journal of Statistical Software"), 1],
res.mfa$ind$coord[c("Journal of Statistical Software"), 2],cex=1,
labels=c("Journal of Statistical Software"),pos=3, col=2)
plot.MFA(res.mfa,choix="var", cex=0.5,shadow=TRUE, autoLab = "ves")
plot(res.mfa, select="IEEE/ACM Transactions on Networking",
partial="all",
habillage="group".unselect=0.9.chrono=TRUE)
```

Multilevel component analysis

Ex: inhabitants nested within countries $X \in \mathbb{R}^{K \times J}$

- similarities between countries? level 1
- similarities between inhabitants within each country? level 2
- relationship between variables at each level

Analysis of variance: split the sum of squares for each variable j

$$\sum_{i=1}^{I} \sum_{k=1}^{k_i} (x_{ijk_i})^2 = \sum_{i=1}^{I} k_i (x_{.j.})^2 + \sum_{i=1}^{I} k_i (x_{ij.} - x_{.j.})^2 + \sum_{i=1}^{I} \sum_{k=1}^{k_i} (x_{ijk_i} - x_{ij.})^2$$

Multilevel PCA MLPCA

 \Rightarrow Model for the between and within part i = 1, ..., I groups, J var

$$X_{i_{(k_i \times J)}} = 1_{k_i} m' + 1_{k_i} F_i^{b'} V^{b'} + F_i^{w} V^{w'} + E_i$$

- F_i^b ($Q_b \times 1$) between component scores of group *i*
- V^b $(J \times Q_b)$ between loading matrix
- F_i^w ($k_i \times Q_w$) within component scores of group *i*
- V_w ($J \times Q_w$) within loading matrix. Constant across groups

Fitted by solving the least squares (Timmerman, 2006)

$$\operatorname{argmin} F(m, F_i^b, V^b, F_i^w, V^w) = \sum_{i=1}^{I} \left\| X_i - 1_{k_i} m' - 1_{k_i} F_i^{b'} V^{b'} - F_i^w V^{w'} \right\|^2,$$

$$\sum_{i=1}^{I} k_i F_i^b = 0_{Q_b}$$
 and $1'_{k_i} F_i^w = 0_{Q_w}$, $\forall i$ for identifiability.

MLPCA - quantitative data

i = 1, ..., I groups, J var, k_i nb obs in group i \Rightarrow Estimation: minimize the RSS

argmin
$$F() = \sum_{i=1}^{l} \left\| X_i - 1_{k_i} m' - 1_{k_i} F_i^{b'} V^{b'} - F_i^{w} V^{w'} \right\|^2$$

$$\sum_{i=1}^{I} k_i F_i^b = 0_{Q_b}$$
 and $1'_{k_i} F_i^w = 0_{Q_w}$, $\forall i$ for identifiability.

 (\hat{F}^b, \hat{V}^b) : Weigthed PCA on the between part: SVD on $D_w X_m$; X_m $(I \times J)$ the means of the variables per group, D_w $(I \times I)$ $D_{wii} = \sqrt{k_i}$

 (\hat{F}^w, \hat{V}^w) PCA on the within part: SVD on the centered data per group X^w ($K \times J$), $K = \sum_i k_i$

- \Rightarrow With missing values: Weighted Least Squares
- \Rightarrow Iterative imputation algorithm (imputation estimation)

Iterative MLPCA

- 2. iteration ℓ : estimation of the between structure
 - SVD $D_w X_m^{\ell} = PDQ'$; Q_b eigenvectors are kept: $\hat{F}_i^b = [D_w^{-1}P_{Q_b}]_i$, \hat{F}^b concatenation by row of $[\mathbf{1}_{k_i}\hat{F}_i^b]$ $\hat{V}^b = Q_{Q_b}D_{Q_b}$, $(J \times Q_b)$

• the between hat matrix is computed: $(\hat{X}^b)^\ell = \hat{F}^b \hat{V}^{b'}$

- 3. iteration ℓ : imputation of the missing values with the fitted values
 - $\hat{X}^{\ell} = \mathbf{1}_{K} \hat{m}^{(\ell-1)'} + (\hat{X}^{b})^{\ell} + (\hat{X}^{w})^{(\ell-1)}$. The newly imputed dataset is $X^{\ell} = W \odot X + (\mathbf{1}_{K} \times \mathbf{1}'_{J} W) \odot \hat{X}^{\ell}$
 - \hat{m}^{ℓ} is computed on X^{ℓ}
- 4. iteration ℓ : estimation of the within structure
 - SVD $(X^w)^{\ell} = PDQ'; Q_w$ eigenvectors are kept: $F^w = P_{Q_w} (K \times Q_w)$ $V^w = Q_{Q_w} D_{Q_w} (J \times Q_w)$
 - the within hat matrix is computed $(\hat{X}^w)^\ell = \hat{F}^w \hat{V}^{w'}$
- 5. iteration ℓ : imputation of the missing values with the fitted values

•
$$X^{\ell+1} = W \odot X + (\mathbf{1}_K \times \mathbf{1}'_J - W) \odot (\mathbf{1}_K \hat{m}^{(\ell)'} + (\hat{X}^b)^{\ell} + (\hat{X}^w)^{\ell})$$

 \Rightarrow Start with the matrix of dummy variables A and define a between and a within part

 \Rightarrow Then, MCA is applied on each part

Between: Apply MCA on the matrix with the mean of A per group i (proportion of obs taking each category in group i) (proportion of some disease in a particular hospital). $\hat{A}^b = F^b V^{b'} D_p^{1/2} + 1_n p'$

Within part Apply MCA on the data where the between part has been swept out (SVD is applied to $\frac{1}{np} \left(A - \hat{A}^b \right) D_p^{-1/2}$) $\hat{A}^w = (np) F^w V^{w'} D_p^{1/2}$.

$$\hat{A}=\hat{A}^b+\hat{A}^w$$

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	NA	v
ind 1232	с	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	NA	NA	1	0	
ind 2	NA	NA	NA	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	NA	NA	
ind 1232	0	0	1	0	1	0	1	

• Initialization: imputation of the indicator matrix (proportions)

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	NA	v
ind 1232	с	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.41	0.59	1	0	
ind 2	0.20	0.30	0.50	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.27	0.78	
ind 1232	0	0	1	0	1	0	1	

- Initialization: imputation of the indicator matrix (proportions)
- Iterate until convergence

● estimation: Multilevel MCA on the completed data $\rightarrow \hat{F}^{b}, \hat{V}^{b}, \hat{F}^{w}, \hat{V}^{w}$

	114	1.0	1.00	1111
	V1	V2	٧3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	NA	v
ind 1232	с	f	h	v

		V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
i	ind 1	1	0	0	0.41	0.59	1	0	
i	ind 2	0.20	0.30	0.50	0	1	1	0	
1	ind 3	1	0	0	1	0	0	1	
i	ind 4	1	0	0	1	0	0	1	
1	ind 5	0	1	0	0	1	0	1	
i	ind 6	0	0	1	0	1	0	1	
1	ind 7	0	0	1	0	1	0.27	0.78	
ind	d 1232	0	0	1	0	1	0	1	

- Initialization: imputation of the indicator matrix (proportions)
- Iterate until convergence
 - estimation: Multilevel MCA on the completed data $\rightarrow \hat{F}^{b}, \hat{V}^{b}, \hat{F}^{w}, \hat{V}^{w}$
 - ② imputation with the fitted matrix $\hat{A} = \hat{A}^b + \hat{A}^w$

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	NA	v
ind 1232	с	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.65	0.35	1	0	
ind 2	0.11	0.20	0.69	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.30	0.40	
ind 1232	0	0	1	0	1	0	1	

- Initialization: imputation of the indicator matrix (proportions)
- Iterate until convergence
 - estimation: Multilevel MCA on the completed data $\rightarrow \hat{F}^{b}, \hat{V}^{b}, \hat{F}^{w}, \hat{V}^{w}$
 - ② imputation with the fitted matrix $\hat{A} = \hat{A}^b + \hat{A}^w$
 - G column margins are updated

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	NA	v
ind 1232	с	f	h	v

		V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
in	d 1	1	0	0	0.65	0.35	1	0	
in	d 2	0.11	0.20	0.69	0	1	1	0	
in	d 3	1	0	0	1	0	0	1	
in	d 4	1	0	0	1	0	0	1	
in	d 5	0	1	0	0	1	0	1	
in	d 6	0	0	1	0	1	0	1	
in	d 7	0	0	1	0	1	0.30	0.40	
· ·									
ind	1232	0	0	1	0	1	0	1	

- Initialization: imputation of the indicator matrix (proportions) •
- Iterate until convergence
- () estimation: Multilevel MCA on the completed data \rightarrow $\hat{F}^{b}, \hat{V}^{b}, \hat{F}^{w}, \hat{V}^{w}$
 - 2 imputation with the fitted matrix $\hat{A} = \hat{A}^b + \hat{A}^w$
 - O column margins are updated

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	NA	v
ind 1232	с	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.71	0.29	1	0	
ind 2	0.12	0.29	0.59	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.37	0.63	
ind 1232	0	0	1	0	1	0	1	

 \Rightarrow the imputed values can be seen as degree of membership

- Initialization: imputation of the indicator matrix (proportions)
- Iterate until convergence
- () estimation: Multilevel MCA on the completed data \rightarrow $\hat{F}^{b}, \hat{V}^{b}, \hat{F}^{w}, \hat{V}^{w}$
 - 2 imputation with the fitted matrix $\hat{A} = \hat{A}^b + \hat{A}^w$
 - Column margins are updated

	V1	V2	V3	 V14
ind 1	а	е	g	 u
ind 2	С	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	g	v
ind 1232	С	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.71	0.29	1	0	
ind 2	0.12	0.29	0.59	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.37	0.63	
ind 1232	0	0	1	0	1	0	1	

Two ways to impute categories: majority or draw

- Initialization: imputation of the indicator matrix (proportions)
- Iterate until convergence
- () estimation: Multilevel MCA on the completed data \rightarrow $\hat{F}^{b}, \hat{V}^{b}, \hat{F}^{w}, \hat{V}^{w}$
 - 2 imputation with the fitted matrix $\hat{A} = \hat{A}^b + \hat{A}^w$
 - Column margins are updated

	V1	V2	V3	 V14
ind 1	а	е	g	 u
ind 2	С	f	g	u
ind 3	а	е	h	v
ind 4	а	е	h	v
ind 5	b	f	h	u
ind 6	с	f	h	u
ind 7	с	f	g	v
ind 1232	С	f	h	v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.71	0.29	1	0	
ind 2	0.12	0.29	0.59	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.37	0.63	
ind 1232	0	0	1	0	1	0	1	

Two ways to impute categories: majority or draw

Traumabase: 15000 patients/ 250 variables/ 8 hospitals

	Cente	Accident	Age	Sex	Weight	Height	BMI	BP	SBP
1	Beaujo	n Fall	54	m	85	NR	NR	180	110
2	Lill	e Other	33	m	80	1.8	24.69	130	62
3	Pitie Salpetrier	e Gun	26	m	NR	NR	NR	131	62
4	Beaujo	n AVP moto	63	m	80	1.8	24.69	145	89
6	Pitie Salpetrier	a AVP bicycle	33	m	75	NR	NR	104	86
7	Pitie Salpetrier	e AVP pedestrian	30	W	NR	NR	NR	107	66
9	HEG	White weapon	16	m	98	1.92	26.58	118	54
10	Toulo	n White weapon	20	m	NR	NR	NR	124	73
11	Bicetr	e Fall	61	m	84	1.7	29.07	144	105

Sp02 Temperature Lactates Hb Glasgow Transfusion

1	97	35.6	<na></na>	12.7	12	yes
2	100	36.5	4.8	11.1	15	no
3	100	36	3.9	11.4	3	no
4	100	36.7	1.66	13	15	yes
6	100	36	NM	14.4	15	no
7	100	36.6	NM	14.3	15	yes
9	100	37.5	13	15.9	15	yes
10	100	36.9	NM	13.7	15	no
11	100	36.6	1.2	14.2	14	no

.

Traumabase: 15000 patients/ 250 variables/ 8 hospitals

		Cente	r	Acci	dent	Ag	e Sex	We	eight 1	Height	BMI B	P SE	3P
1		Beaujon		Fall			54	m	85.00	1.84	27.04	83	13
2		Lille		Othe	r	1	33	m	80.00	1.80	24.69	33	98
3	Pitie	Salpetriere		Gun			26	m	81.78	1.85	24.33	34	98
4		Beaujon		AVP :	moto		63	m	80.00	1.80	24.69	48	125
6	Pitie	Salpetriere		AVP	bicycle		33	m	75.00	1.83	24.53	6	122
7	Pitie	Salpetriere		AVP	pedestr	i	30	m	81.89	1.82	25.24	9	102
9		HEGP		Whit	e weapo	n	16	m	98.00	1.92	26.58	21	90
10		Toulon		Whit	e weapo	n	20	m	81.68	1.82	25.05	27	109
11		Bicetre		Fall			51	m	84.00	1.70	29.07	47	8
	Sp02 1	Temperature 3	Lactates	Hb	Glasgow	ı							
1	46	61	289.07	33	14	ł							
2	2	72	464.00	16	14	ł							
3	2	65	416.00	19	7	,							
4	2	74	130.00	36	e	5							
6	2	65	285.91	50	e	5							
7	2	73	244.99	49	e	6							
9	2	83	196.00	65	e	5							
10	2	76	262.44	43	e	6							
11	2	73	84.00	48	E	5							

The simulated data:

- $X_{i_{(k_i \times J)}} = 1_{k_i}m' + 1_{k_i}F_i^{b'}V^{b'} + F_i^{w}V^{w'} + E_i$, with $E_{ijk_i} \sim \mathcal{N}(0,\sigma)$
- 5 groups, 10 variables, $Q_b = 2$, $Q_w = 2$

Many scenarios are considered:

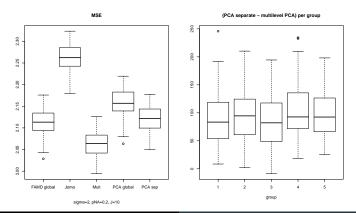
- number of individuals per group: 10-20, 70-100
- level of noise: low, strong
- percentage of missing values: 10%, 25%, 40%
- missing values mechanism: MCAR, MAR

$$\Rightarrow$$
 Prediction error: $\frac{1}{KJ}\sum_{ijk_i}(x_{ijk_i}-\hat{x_{ijk_i}})^2$

Results

Competitors:

- Conditional model with random effect regression (mice)
- Random forests (bühlmann, 2012) (not designed)
- Global PCA Separate PCA
- Global mixed PCA (with hospital)



	J = 10	<i>J</i> = 30	5 <i>cat</i>	5 <i>cat</i>
Global PCA	0.09	0.3		
mice	11	282		
Multilevel SVD	1.5	1.2	2	7
Global mixed PCA	0.4	0.7	1	4
Random forest	59	200	27	246

Table 1: Time in seconds for a dataset with 20% NA, $I = 5 k_i = 200$

- PCA mixed as Random Forest
- mice (random effect model): difficulties with large dimensions
- Separate PCA: pb with many missing values
- Multilevel SVD = global SVD when no group effect
- Imputation properties depends on the method (linear)
- Other methods do not handle categorical variables

Combining data from different institutional databases promises many advantages in personalizing medical care (large n, more chance for finding patients like me)

 \Rightarrow NIH requires sharing of data from funded projects

Combining data from different institutional databases promises many advantages in personalizing medical care (large n, more chance for finding patients like me)

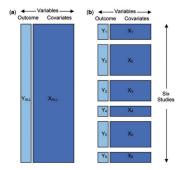
 \Rightarrow NIH requires sharing of data from funded projects

 \Rightarrow The problem: high barriers to aggregation of medical data

- lack of standardization of ontologies
- privacy concerns
- proprietary attitude towards data, reluctance to cede control
- complexity/size of aggregated data, updates problems

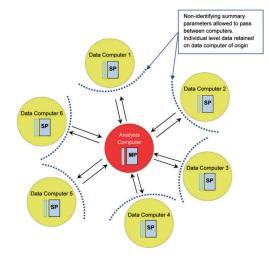
Solution: distributed computation

- \Rightarrow Data aggregation is not always necessary
- \Rightarrow NIH splits the storage of aggregated data across several centers



- \Rightarrow Data can stay at site
- \Rightarrow Computations can be distributed (share burden)
- \Rightarrow Hospitals only share intermediate results instead of the raw data

Topology: master-workers (Wolfson, et. al (2010))



 \Rightarrow Ex: Each site share the sum of age \tilde{X}_i and the number of patients n_i . The master computes $\bar{X} = \sum n_i \tilde{X}_i / \sum n_i$ \Rightarrow Many models fitting can be implemented:

- Maximizing a likelihood. Intermediate computations break up into sums of quantities computed on local data at sites. Log-likelihood, score function and Fisher information can partition into sums. (OK for logistic regression)
- Singular Value Decomposition. Iterative algorithms available for SVD using quantities computed on local data at sites.

• And more.

Implemented in the R package discomp (Narasimhan et. al., 2017)

SVD:
$$X_{n \times p}$$
 : $U_{n \times k} D_{k \times k} V'_{p \times k}$

Power method to get the first direction:

Data:
$$X \in \mathcal{R}^{n \times p}$$

Result: $u \in \mathcal{R}^n$, $v \in \mathcal{R}^p$, and $d > 0$
 $u \leftarrow (\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}})$;
repeat
 $v \leftarrow X^\top u$;
 $v \leftarrow v/||v||$;
 $u \leftarrow Xv$;
 $d \leftarrow ||u||$;
 $u \leftarrow u/||u||$;
until convergence;

Other dims: "deflation", same procedure in the residuals (X - udv')

 \Rightarrow Involves inner products and sums: distributed

Privacy preserving rank k SVD

```
Data: each worker has private data X_i \in \mathcal{R}^{n_i \times p}
Result: V \in \mathbb{R}^{p \times k}, and d_1 \ge \ldots d_k \ge 0
V \leftarrow 0, d \leftarrow 0 foreach worker site j do
    U^{[j]} = 0;
    transmit n_i to master;
end
for i \leftarrow 1 to k do
     for each worker site j do u^{[j]} \leftarrow (1, 1, \dots, 1) of length n_i;
    ||u|| \leftarrow \sqrt{\sum_j n_j};
     transmit ||u||, V, and D to workers;
     repeat
          foreach worker site j do
               u^{[j]} \leftarrow u^{[j]} / ||u||;
              calculate v^{[j]} \leftarrow (\boldsymbol{X}^{[j]} - U^{[j]}DV^{\top})^{\top}u^{[j]};
              transmit v^{[j]} to master;
          end
          v \leftarrow \sum_{i} v^{[j]};
          v \leftarrow v/||v||;
          transmit v to workers:
          foreach worker site j do
              calculate u^{[j]} \leftarrow X^{[j]}v:
              transmit ||u^{[j]}|| to master;
         \mathbf{end}
          ||u|| \leftarrow \sum_{j} ||u^{[j]}||;
          transmit ||u|| to workers;
          d_i \leftarrow ||u||:
     until convergence;
     V \leftarrow \mathtt{cbind}(V, v);
     for each worker site j do U^{[j]} \leftarrow \text{cbind}(U^{[j]}, u^{[j]}):
end
```

Multilevel imputation

- \Rightarrow Impute multilevel data with Multilevel SVD
- \Rightarrow Distributed multilevel imputation
- \Rightarrow Impute the data of one hospital using the data of the others
- \Rightarrow Incentive to encourage the hospitals to participate in the project
- \Rightarrow Apply other statistical methods on the imputed data (logistic regression)

Multilevel PCA powerful for single imputation of continuous & categorical multilevel data: reduce the dimensionality - capture the similarities between rows and relationship between variables at both levels.

Method without missing values

 \Rightarrow Computationaly fast - distributed - Implemented R package missMDA

• Numbers of components Q_b and Q_w ?

• Inference after imputation. Underestimation of the variance with single imputation

Multilevel PCA powerful for single imputation of continuous & categorical multilevel data: reduce the dimensionality - capture the similarities between rows and relationship between variables at both levels.

Method without missing values

 \Rightarrow Computationaly fast - distributed - Implemented R package missMDA

• Numbers of components Q_b and Q_w ? cross-validation?

• Inference after imputation. Underestimation of the variance with single imputation

Multilevel PCA powerful for single imputation of continuous & categorical multilevel data: reduce the dimensionality - capture the similarities between rows and relationship between variables at both levels.

Method without missing values

 \Rightarrow Computationaly fast - distributed - Implemented R package missMDA

• Numbers of components Q_b and Q_w ? cross-validation?

• Inference after imputation. Underestimation of the variance with single imputation

Multiple imputation: bootstrap + drawn from the predictive distribution $\mathcal{N}\left(\mathbf{1}_{\mathcal{K}}\hat{m}' + \hat{F}^{b}\hat{B}^{b'} + \hat{F}^{w}\hat{B}^{w'}, \hat{\sigma}^{2}\right)$

Low-rank model with covariates for count data with missing values (2019, Journal of Multivariate Analysis) Geneviève Robin, Julie Josse, Éric Moulines and Sylvain Sardy

https://genevieverobin.files.wordpress.com/2019/08/ presentation_grobin.pdf

Main effects and interactions in mixed and incomplete data frames (2019, Journal of American Statistical Association) Geneviève Robin, Olga Klopp, Julie Josse, Éric Moulines and Robert Tibshirani

Outline

- 1. Introduction
- 2. Single imputation
 - Single imputation methods
 - Single imputation with PCA
 - Practice
- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

Ignorable

X has a density, parametrized by θ that we want to estimate $f(X, M|\theta, \phi)$ the joint distribution ML estimate:

$$\begin{aligned} f(X_{\rm obs}, M; \theta, \phi) &= \int f(X_{\rm obs}, X_{\rm mis}, M; \theta, \phi) dX_{\rm mis} \\ &= \int f(X_{\rm obs}, X_{\rm mis}; \theta) f(M|X_{\rm obs}, X_{\rm miss}; \phi) dX_{\rm mis}. \end{aligned}$$

When MAR

$$\begin{split} f(X_{\rm obs}, M; \theta, \phi) &= \int f(X_{\rm obs}, X_{\rm mis}; \theta) f(M|X_{\rm obs}; \phi) dX_{\rm mis}, \\ &= f(M|X_{\rm obs}; \phi) \int f(X_{\rm obs}, X_{\rm miss}; \theta) dX_{\rm miss}, \end{split}$$

$$f(X_{\text{obs}}, M; \theta, \phi) = f(M|X_{\text{obs}}; \phi)f(X_{\text{obs}}; \theta).$$

Expectation - Maximization (Dempster et al., 1977)

Rationale to get ML estimates: max L_{obs} through max of L_{comp} of $X = (X_{obs}, X_{miss})$. Augment the data to simplify the problem.

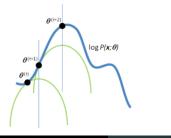
E step (conditional expectation):

$$egin{aligned} \mathcal{Q}(heta, heta^\ell) &= \int \mathsf{ln}(f(X; heta))f(X_{ extsf{miss}}|X_{ extsf{obs}}; heta^\ell)dX_{ extsf{miss}} \end{aligned}$$

M step (maximization):

$$\theta^{\ell+1} = \operatorname{argmax}_{\theta} Q(heta, heta^{\ell})$$

Result: when $\theta^{\ell+1} \max Q(\theta, \theta^{\ell})$ then $L(X_{obs}, \theta^{\ell+1}) \ge L(X_{obs}, \theta^{\ell})$.



Maximum likelihood approach

- Ex: Hypothesis $x_{i.} \sim \mathcal{N}\left(\mu, \Sigma\right)$
- \Rightarrow Point estimates with EM:
- > library(norm)
- > pre <- prelim.norm(as.matrix(don))</pre>
- > thetahat <- em.norm(pre)</pre>
- > getparam.norm(pre,thetahat)

Exercice: EM with bivariate data

Maximum likelihood approach

- Ex: Hypothesis $x_{i.} \sim \mathcal{N}\left(\mu, \Sigma\right)$
- \Rightarrow Point estimates with EM:
- > library(norm)
- > pre <- prelim.norm(as.matrix(don))</pre>
- > thetahat <- em.norm(pre)</pre>
- > getparam.norm(pre,thetahat)

Exercice: EM with bivariate data

 \Rightarrow Variances:

- Supplemented EM (Meng, 1991), Louis formulae
- Bootstrap approach:
 - Bootstrap rows: X^1 , ..., X^B
 - EM algorithm: $(\hat{\mu}^1, \hat{\Sigma}^1)$, ... , $(\hat{\mu}^B, \hat{\Sigma}^B)$

Maximum likelihood approach

- Ex: Hypothesis $x_{i.} \sim \mathcal{N}(\mu, \Sigma)$
- \Rightarrow Point estimates with EM:
- > library(norm)
- > pre <- prelim.norm(as.matrix(don))</pre>
- > thetahat <- em.norm(pre)</pre>
- > getparam.norm(pre,thetahat)

Exercice: EM with bivariate data

 \Rightarrow Variances:

- Supplemented EM (Meng, 1991), Louis formulae
- Bootstrap approach:
 - Bootstrap rows: X^1 , ..., X^B
 - EM algorithm: $(\hat{\mu}^1, \hat{\Sigma}^1)$, ... , $(\hat{\mu}^B, \hat{\Sigma}^B)$

Other models: SAEM (SAEM for logistic regression)

Logistic regression with missing covariates: Parameter estimation, model selection and prediction (Jiang, J., Lavielle, Gauss,

Hamada, 2018)

 $x = (x_{ij})$ a $n \times d$ matrix of quantitative covariates $y = (y_i)$ an *n*-vector of binary responses $\{0, 1\}$

Logistic regression model: $\mathbb{P}(y_i = 1 | x_i; \beta) = \frac{\exp(\beta_0 + \sum_{j=1}^d \beta_j x_{ij})}{1 + \exp(\beta_0 + \sum_{j=1}^d \beta_j x_{ij})}$ Covariables: $x_i \underset{i.i.d.}{\sim} \mathcal{N}_d(\mu, \Sigma)$ Log-likelihood with $\theta = (\mu, \Sigma, \beta)$: $\mathcal{LL}(\theta; x, y) = \sum_{i=1}^n \left(\log(p(y_i | x_i; \beta)) + \log(p(x_i; \mu, \Sigma)) \right).$

Logistic regression with missing covariates: Parameter estimation, model selection and prediction (Jiang, J., Lavielle, Gauss,

Hamada, 2018)

 $x = (x_{ij})$ a $n \times d$ matrix of quantitative covariates $y = (y_i)$ an *n*-vector of binary responses $\{0, 1\}$

Logistic regression model: $\mathbb{P}(y_i = 1 | x_i; \beta) = \frac{\exp(\beta_0 + \sum_{j=1}^d \beta_j x_{ij})}{1 + \exp(\beta_0 + \sum_{j=1}^d \beta_j x_{ij})}$ Covariables: $x_i \underset{i.i.d.}{\sim} \mathcal{N}_d(\mu, \Sigma)$ Log-likelihood with $\theta = (\mu, \Sigma, \beta)$: $\mathcal{LL}(\theta; x, y) = \sum_{i=1}^n \left(\log(p(y_i | x_i; \beta)) + \log(p(x_i; \mu, \Sigma)) \right).$

X_1	X_2	<i>X</i> ₃	 Y
NA	20	10	 shock
-6	45	NA	 shock
0	NA	30	 no shock
NA	32	35	 shock
1	63	40	 shock
-2	NA	12	 no shock

$$\mathcal{LL}(heta; x, y) = \sum_{i=1}^{n} \Big(\log(\mathrm{p}(y_i | x_i; eta)) + \log(\mathrm{p}(x_i; \mu, \Sigma)) \Big)$$

X_1	X_2	<i>X</i> ₃	 M_1	M_2	M ₃	 Y
NA	20	10	 1	0	0	 shock
-6	45	NA	 0	0	1	 shock
0	NA	30	 0	1	0	 no shock
NA	32	35	 1	0	0	 shock

 $m = (m_{ij})$ a $n \times d$ matrix $m_{ij} = 0$ if x_{ij} is observed and 1 otherwise $(y_i, x_i, m_i) \underset{\text{i.i.d.}}{\sim} \{p_{\theta}(x, y) f_{\phi}(m \mid x, y)\}$ data & missing values mechanism

$$\mathcal{LL}(\theta; x, y) = \sum_{i=1}^{n} \left(\log(p(y_i | x_i; \beta)) + \log(p(x_i; \mu, \Sigma)) \right)$$

X_1	X_2	<i>X</i> ₃	 M_1	M_2	M ₃	 Y
NA	20	10	 1	0	0	 shock
-6	45	NA	 0	0	1	 shock
0	NA	30	 0	1	0	 no shock
NA	32	35	 1	0	0	 shock

 $m = (m_{ij})$ a $n \times d$ matrix $m_{ij} = 0$ if x_{ij} is observed and 1 otherwise $(y_i, x_i, m_i) \underset{\text{i.i.d.}}{\sim} \{p_{\theta}(x, y) f_{\phi}(m \mid x, y)\}$ data & missing values mechanism

Ex: Income & Age with missing values on income MAR: depends only on observed values, i.e. on age (not income)

Ignorable mechanism $\mathcal{L}_{obs}(\theta) \triangleq \prod_{i=1}^{n} \int p_{\theta}(x_i, y_i) dx_{i,mis}$

Stochastic Approximation EM - package misaem

 $\operatorname{argmax} \mathcal{LL}(\theta; x_{obs}, y) = \int \mathcal{LL}(\theta; x, y) dx_{mis}$

• E-step: Evaluate the quantity

$$\begin{aligned} \mathcal{Q}_{k}(\theta) &= \mathbb{E}[\mathcal{LL}(\theta; x, y) | x_{\text{obs}}, y; \theta_{k-1}] \\ &= \int \mathcal{LL}(\theta; x, y) \mathsf{p}(x_{\text{mis}} | x_{\text{obs}}, y; \theta_{k-1}) dx_{\text{mis}} \end{aligned}$$

• M-step: $\theta_k = \operatorname{argmax}_{\theta} Q_k(\theta)$

\Rightarrow Unfeasible computation of expectation

MCEM (Wei & Tanner, 1990): Generate samples of missing data from $p(x_{mis}|x_{obs}, y; \theta_{k-1})$ and replace the expectation by an empirical mean

 \Rightarrow Require a huge number of samples

SAEM (Lavielle, 2014) almost sure convergence to MLE

Unbiased estimates: $\hat{eta}_1,\ldots,\hat{eta}_d$ - $\hat{V}(\hat{eta}_1),\ldots,\hat{V}(\hat{eta}_d)$ - good coverage

(book, Lavielle 2014) Starting from an initial guess θ_0 , the *k*th iteration consists of three steps:

• Simulation: For $i = 1, 2, \dots, n$, draw one sample $x_{i,mis}^{(k)}$ from

$$\mathbf{p}(x_{i,\min}|x_{i,\text{obs}},y_i;\theta_{k-1}).$$

• Stochastic approximation: Update the function Q

$$Q_k(heta) = Q_{k-1}(heta) + \gamma_k \left(\mathcal{LL}(heta; \mathsf{x}_{\mathrm{obs}}, \mathsf{x}_{\mathrm{mis}}^{(k)}, y) - Q_{k-1}(heta)
ight),$$

where (γ_k) is a decreasing sequence of positive numbers.

• Maximization: $\theta_k = \operatorname{argmax}_{\theta} Q_k(\theta)$.

(book, Lavielle 2014) Starting from an initial guess θ_0 , the *k*th iteration consists of three steps:

• Simulation: For $i = 1, 2, \dots, n$, draw one sample $x_{i,mis}^{(k)}$ from

$$\mathbf{p}(x_{i,\min}|x_{i,\text{obs}},y_i;\theta_{k-1}).$$

• Stochastic approximation: Update the function Q

$$Q_k(heta) = Q_{k-1}(heta) + \gamma_k \left(\mathcal{LL}(heta; \mathsf{x}_{\mathrm{obs}}, \mathsf{x}_{\mathrm{mis}}^{(k)}, y) - Q_{k-1}(heta)
ight),$$

where (γ_k) is a decreasing sequence of positive numbers.

• Maximization: $\theta_k = \operatorname{argmax}_{\theta} Q_k(\theta)$.

Convergence: (Allassonniere et al. 2010)

The choice of the sequence (γ_k) is important for ensuring the almost sure convergence of SAEM to a MLE.

Metropolis-Hastings algorithm

Target distribution

$$f_i(x_{i,\min}) = p(x_{i,\min}|x_{i,obs}, y_i; \theta)$$
$$\propto p(y_i|x_i; \beta) p(x_{i,\min}|x_{i,obs}; \mu, \Sigma).$$

Metropolis-Hastings algorithm

Target distribution

$$f_i(x_{i,\min}) = p(x_{i,\min}|x_{i,obs}, y_i; \theta)$$
$$\propto p(y_i|x_i; \beta) p(x_{i,\min}|x_{i,obs}; \mu, \Sigma)$$

Proposal distribution $g_i(x_{i,\min}) = \mathbf{p}(x_{i,\min}|x_{i,\text{obs}};\mu,\Sigma)$

$$x_{i,\mathrm{mis}}|x_{i,\mathrm{obs}} \sim \mathcal{N}_p(\mu_i, \Sigma_i)$$

$$\mu_{i} = \mu_{i,\text{mis}} + \sum_{i,\text{mis,obs}} \sum_{i,\text{obs,obs}}^{-1} (x_{i,\text{obs}} - \mu_{i,\text{obs}}),$$

$$\Sigma_{i} = \sum_{i,\text{mis,mis}} - \sum_{i,\text{mis,obs}} \sum_{i,\text{obs,obs}}^{-1} \sum_{i,\text{obs,mis}},$$

Metropolis-Hastings algorithm

Target distribution

$$f_i(x_{i,\min}) = p(x_{i,\min}|x_{i,obs}, y_i; \theta)$$

$$\propto p(y_i|x_i; \beta) p(x_{i,\min}|x_{i,obs}; \mu, \Sigma).$$

Proposal distribution $g_i(x_{i,\min}) = \mathbf{p}(x_{i,\min}|x_{i,\text{obs}};\mu, \Sigma)$

$$x_{i,\mathrm{mis}}|x_{i,\mathrm{obs}} \sim \mathcal{N}_p(\mu_i, \Sigma_i)$$

$$\begin{split} \mu_{i} &= \mu_{i,\text{mis}} + \Sigma_{i,\text{mis,obs}} \Sigma_{i,\text{obs,obs}}^{-1} \big(x_{i,\text{obs}} - \mu_{i,\text{obs}} \big), \\ \Sigma_{i} &= \Sigma_{i,\text{mis,mis}} - \Sigma_{i,\text{mis,obs}} \Sigma_{i,\text{obs,obs}}^{-1} \Sigma_{i,\text{obs,mis}}, \end{split}$$

Metropolis

•
$$z_{im}^{(k)} \sim g_i(x_{i,mis}), \ u \sim \mathcal{U}[0,1]$$

• $r = \frac{f_i(z_{im}^{(k)})/g_i(z_{im}^{(k)})}{f_i(z_{i,m-1}^{(k)})/g_i(z_{i,m-1}^{(k)})}$
• If $u < r$, accept $z_{im}^{(k)}$

Only need a few steps of Markov chains in each iteration of SAEM!

Observed Fisher information matrix (FIM) wrt β

$$\mathcal{I}(\theta) = -rac{\partial^2 \mathcal{LL}(\theta; x_{\mathrm{obs}}, y)}{\partial \theta \partial \theta^{T}}.$$

Observed Fisher information matrix (FIM) wrt β

$$\mathcal{I}(\theta) = -rac{\partial^2 \mathcal{LL}(\theta; x_{\mathrm{obs}}, y)}{\partial \theta \partial \theta^{T}}.$$

Louis formula

$$\begin{split} \mathcal{I}(\theta) &= - \mathbb{E}\left(\frac{\partial^2 \mathcal{LL}(\theta; x, y)}{\partial \theta \partial \theta^T} \Big| x_{\rm obs}, y; \theta\right) \\ &- \mathbb{E}\left(\frac{\partial \mathcal{LL}(\theta; x, y)}{\partial \theta} \frac{\partial \mathcal{LL}(\theta; x, y)^T}{\partial \theta} \Big| x_{\rm obs}, y; \theta\right) \\ &+ \mathbb{E}\left(\frac{\partial \mathcal{LL}(\theta; x, y)}{\partial \theta} | x_{\rm obs}, y; \theta\right) \mathbb{E}\left(\frac{\partial \mathcal{LL}(\theta; x, y)}{\partial \theta} | x_{\rm obs}, y; \theta\right)^T. \end{split}$$

Given the MH samples of unobserved data $(x_{i,{\rm mis}}^{(m)},1\leq i\leq n,1\leq m\leq M)$, and the SAEM estimate $\hat{\theta}$

 \Rightarrow Estimate FIM by empirical means.

With \tilde{p}_{θ} the number of estimated parameters in a given model \mathcal{M} , model selection criterion (*penalized likelihood*) :

$$\operatorname{BIC}(\mathcal{M}) = -2\mathcal{LL}(\hat{\theta}_{\mathcal{M}}; x_{\operatorname{obs}}, y) + \log(n)d(\mathcal{M}),$$

How to estimate observed likelihood ?

With \tilde{p}_{θ} the number of estimated parameters in a given model \mathcal{M} , model selection criterion (*penalized likelihood*) :

$$\operatorname{BIC}(\mathcal{M}) = -2\mathcal{LL}(\hat{\theta}_{\mathcal{M}}; x_{\operatorname{obs}}, y) + \log(n)d(\mathcal{M}),$$

How to estimate observed likelihood ?

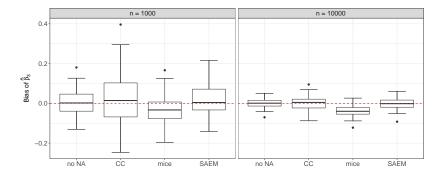
$$\begin{split} \mathbf{p}(y_i, x_{i,\text{obs}}; \theta) &= \int \mathbf{p}(y_i, x_{i,\text{obs}} | x_{i,\text{mis}}; \theta) \mathbf{p}(x_{i,\text{mis}}; \theta) dx_{i,\text{mis}} \\ &= \int \mathbf{p}(y_i, x_{i,\text{obs}} | x_{i,\text{mis}}; \theta) \frac{\mathbf{p}(x_{i,\text{mis}}; \theta)}{g_i(x_{i,\text{mis}})} g_i(x_{i,\text{mis}}) dx_{i,\text{mis}} \\ &= \mathbb{E}_{g_i} \left(\mathbf{p}(y_i, x_{i,\text{obs}} | x_{i,\text{mis}}; \theta) \frac{\mathbf{p}(x_{i,\text{mis}}; \theta)}{g_i(x_{i,\text{mis}}; \theta)} \right). \end{split}$$

Sample from g_i (the proposal distribution in SAEM)

 \Rightarrow Empirical mean.

Comparison with competitors: estimates

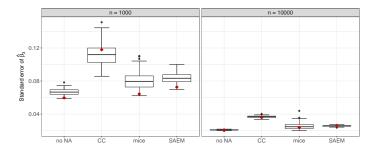
x: p = 5, $n = 1000 / n = 10000 \Rightarrow y \in \{0, 1\}$ percentage of missingness = 10%. Repeat 1000 times for each setting.



Comparison with competitors : coverage

Table 2: Coverage (%) for n = 10000, calculated over 1000 simulations.

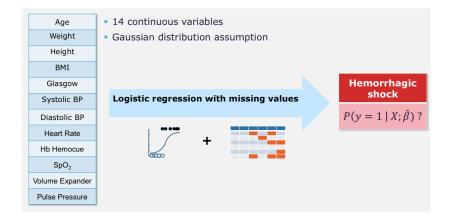
parameter	no NA	CC	mice	SAEM
β_0	95.2	94.4	95.2	94.9
β_1	96.0	94.7	93.9	95.1
β_2	95.5	94.6	94.0	94.3
β_3	94.9	94.3	86.5	94.7
β_4	94.6	94.2	96.2	95.4
β_5	95.9	94.4	89.6	94.7



Julie Josse Dealing With Missing Values in R

Table 3: Comparison of execution time between no NA, MCEM, mice, and SAEM with n = 1000 calculated over 1000 simulations.

Execution time (seconds)	no NA	MCEM	mice	SAEM
min	2.87×10^{-3}	492	0.64	9.96
mean	$4.65 imes 10^{-3}$	773	0.70	13.50
max	43.50×10^{-3}	1077	0.76	16.79



Exploration of dataset

Data preprocessing \Rightarrow 6384 patients in the dataset.

Clinical experience \Rightarrow 14 influential quantitative measurements

The percentage of missingness of some variables varies form 0 to 60%, which indicates the importance of analysis of missing data.

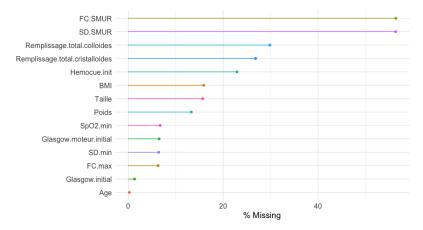


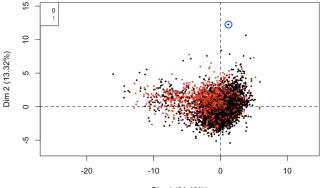
Figure 3: Percentage of missing information in each variable.

Julie Josse	Dealing With Missing Values in R
-------------	----------------------------------

Exploration of dataset

Based on penalized observed log-likelihood

- \Rightarrow Observations resulting in a very small value of the log-likelihood.
- \Rightarrow wrong records



Individuals factor map (PCA)

Dim 1 (31.18%)

Figure 4: Individual factor map of PCA; Blue circle remarks the outlier; Red

Estimation and model selection:

Variable	Effect	Estimate (std error)
Intercept		-0.52 (0.59)
Age	+	0.011 (0.0033)
Glasgow.moteur	-	-0.16 (0.036)
FC.max	+	0.026 (0.0025)
Hemocue.init	-	-0.23 (0.031)
RT.cristalloides	+	0.00090 (0.00010)
RT.colloides	+	0.0019 (0.00021)
SD.min	-	-0.025 (0.0050)
SD.SMUR	-	-0.021 (0.0056)

Estimation and model selection:

Variable	Effect	Estimate (std error)
Intercept		-0.52 (0.59)
Age	+	0.011 (0.0033)
Glasgow.moteur	-	-0.16 (0.036)
FC.max	+	0.026 (0.0025)
Hemocue.init	-	-0.23 (0.031)
RT.cristalloides	+	0.00090 (0.00010)
RT.colloides	+	0.0019 (0.00021)
SD.min	-	-0.025 (0.0050)
SD.SMUR	-	-0.021 (0.0056)

- Older people tend to have a larger possibility to suffer from hemorrhagic shock.
- A low Glasgow score means one makes no motor response, often in the case of hemorrhagic shock.

Outline

- 1. Introduction
- 2. Single imputation
 - Single imputation methods
 - Single imputation with PCA
 - Practice
- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

On the consistency of supervised learning with missing values. (2019). J., Prost, Scornet & Varoquaux

- A feature matrix **X** and a response vector Y
- Find a prediction function that minimizes the expected risk

Bayes rule: $f^* \in \underset{f: \mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \mathbb{E}\left[\ell(f(\mathbf{X}), Y)\right]; \quad f^*(\mathbf{X}) = \mathbb{E}[Y|\mathbf{X}]$

• Empirical risk: $\hat{f}_{\mathcal{D}_{n,\text{train}}} \in \underset{f:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(f(\mathbf{X}_{i}), Y_{i}\right) \right)$

A new data $\mathcal{D}_{n,\text{test}}$ to estimate the generalization error rate

• Bayes consistent: $\mathbb{E}[\ell(\hat{f}_n(\mathbf{X}), Y)] \xrightarrow[n \to \infty]{} \mathbb{E}[\ell(f^*(\mathbf{X}), Y)]$

On the consistency of supervised learning with missing values. (2019). J., Prost, Scornet & Varoquaux

- A feature matrix **X** and a response vector Y
- Find a prediction function that minimizes the expected risk

Bayes rule: $f^* \in \underset{f: \mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \mathbb{E}\left[\ell(f(\mathbf{X}), Y)\right]; \quad f^*(\mathbf{X}) = \mathbb{E}[Y|\mathbf{X}]$

• Empirical risk: $\hat{f}_{\mathcal{D}_{n,\text{train}}} \in \underset{f:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(f(\mathbf{X}_{i}), Y_{i}\right) \right)$

A new data $\mathcal{D}_{n,\text{test}}$ to estimate the generalization error rate

• Bayes consistent: $\mathbb{E}[\ell(\hat{f}_n(\mathbf{X}), Y)] \xrightarrow[n \to \infty]{} \mathbb{E}[\ell(f^*(\mathbf{X}), Y)]$

Differences with classical litterature

- explicitely consider the response variable Y Aim: Prediction
- two data sets (out of sample) with missing values: Train & test sets
- \Rightarrow Is it possible to use previous approaches (EM impute), consistent?
- \Rightarrow Do we need to design new ones?

EM and out-of sample prediction - package misaem

$$\mathbb{P}(y_i = 1 | x_i; \beta) = \frac{\exp^{(X\beta)}}{1 + \exp^{(X\beta)}} \qquad \text{After EM:} \quad \hat{\theta}_n = (\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_d, \hat{\mu}, \hat{\Sigma})$$

New obs: $x_{n+1} = (x_{(n+1)1}, \text{NA}, \text{NA}, x_{(n+1)4}, \dots, x_{(n+1)d})$

Predict Y on a test set with missing entries $x_{\text{test}} = (x_{obs}, x_{miss})$

EM and out-of sample prediction - package misaem

$$\mathbb{P}(y_i = 1 | x_i; \beta) = \frac{\exp^{(X\beta)}}{1 + \exp^{(X\beta)}} \qquad \text{After EM:} \quad \hat{\theta}_n = (\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_d, \hat{\mu}, \hat{\Sigma})$$

New obs: $x_{n+1} = (x_{(n+1)1}, \text{NA}, \text{NA}, x_{(n+1)4}, \dots, x_{(n+1)d})$

Predict Y on a test set with missing entries $x_{\text{test}} = (x_{obs}, x_{miss})$

$$\begin{aligned} \hat{y} &= \operatorname{argmax}_{y} p_{\hat{\theta}}(y|x_{\operatorname{obs}}) = \operatorname{argmax}_{y} \int p_{\hat{\theta}}(y|x) p_{\hat{\theta}}(x_{\operatorname{mis}}|x_{\operatorname{obs}}) dx_{\operatorname{mis}} \\ &= \operatorname{argmax}_{y} \mathbb{E}_{p_{\mathbf{x}_{m}|x_{o}=\mathbf{x}_{o}}} p_{\hat{\theta}_{n}}(y|X_{m}, \mathbf{x}_{o}) \approx \operatorname{argmax}_{y} \sum_{m=1}^{M} p_{\hat{\theta}_{n}}\left(y|x_{\operatorname{obs}}, x_{\operatorname{mis}}^{(m)}\right) \end{aligned}$$

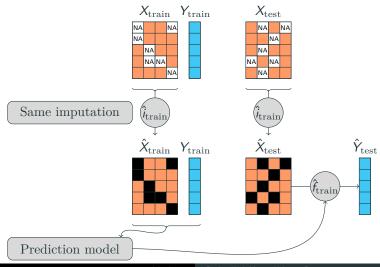
pprox Multiple imputation: Draw M values from $X_{miss}|X_{obs}|$

Í

$$\hat{p}^{M} \hat{p} = \frac{1}{M} \sum_{m=1}^{M} \hat{p}^{m}$$

Imputation prior to learning

Impute the train with \hat{i}_{train} learn a model \hat{f}_{train} with \hat{X}_{train} , Y_{train} Impute the test with the same imputation \hat{i}_{train} - predict \hat{X}_{test} with \hat{f}_{train}



Julie Josse Dealing With Missing Values in R

Imputation with the same model

Easy to implement for univariate imputation: The means $(\hat{\mu}_1, ..., \hat{\mu}_d)$ of each colum of the train. Also OK for Gaussian imputation.

Issue: Many methods are "black-boxes" and take as an input the incomplete data and output the completed data (mice, missForest)

Separate imputation

Impute train and test separately (with a different model)

Issue: Depends on the size of the test set? one observation?

Group imputation/ semi-supervised

Impute train and test simultaneously but the predictive model is learned only on the training imputed data set

Issue: Sometimes no training set at test time

Learn on the mean-imputed training data, impute the test set with the **same means** and predict is optimal if the missing data are MAR and the **learning algorithm is universally consistent**

Framework - assumptions

- $Y = f(\overline{X}) + \varepsilon$
- $\overline{X} = (X_1, \dots, X_d)$ has a continuous density g > 0 on $[0, 1]^d$
- $\|f\|_{\infty} < \infty$
- Missing data MAR on X_1 with $M_1 \perp X_1 | X_2, \ldots, X_d$.
- $(x_2, \ldots, x_d) \mapsto \mathbb{P}[M_1 = 1 | X_2 = x_2, \ldots, X_d = x_d]$ is continuous
- ε is a centered noise independent of (\overline{X}, M_1)

(remains valid when missing values occur for variables X_1, \ldots, X_j)

Imputation with the same model: Mean imputation consistent

Learn on the mean-imputed training data, impute the test set with the **same means** and predict is optimal if the missing data are MAR and the **learning algorithm is universally consistent**

Mean imputed entry
$$\mathbf{x}' = (x'_1, x_2, \dots, x_d)$$
: $x'_1 = x_1 \mathbb{1}_{M_1=0} + \mathbb{E}[X_1]\mathbb{1}_{M_1=1}$

Note the data: $\widetilde{X} = X \odot (1 - M) + \mathbb{NA} \odot M$ (takes value in $\mathbb{R} \cup \{\mathbb{NA}\}$)

Theorem

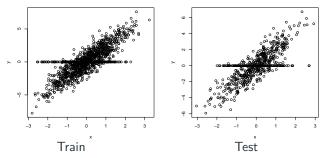
Prediction with mean is equal to the Bayes function almost everywhere

$$f^{\star}_{impute}(x') = \widetilde{f}^{\star}(\widetilde{\mathbf{X}}) = \mathbb{E}[Y|\widetilde{\mathbf{X}} = \widetilde{\mathbf{x}}]$$

Other values than the mean are OK but use the same value for the train and test sets, otherwise the algorithm may fail as the distributions differ

Consistency of supervised learning with NA: Rationale

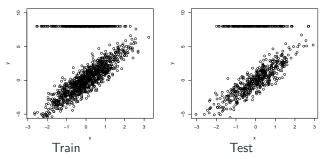
- Specific value, systematic like a code for missing
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant:
- Need a lot of data (asymptotic result) and a super powerful learner



Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

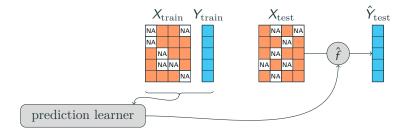
Consistency of supervised learning with NA: Rationale

- Specific value, systematic like a code for missing
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant: out of range
- Need a lot of data (asymptotic result) and a super powerful learner



Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

End-to-end learning with missing values

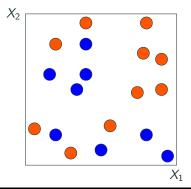


- Trees well suited for empirical risk minimization with missing values: Handle half discrete data \tilde{X} that takes values in $\mathbb{R} \cup \{NA\}$
- Random forests powerful learner

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^* , the threshold z^* which minimises the (quadratic) loss

$$(j^{\star}, z^{\star}) \in \underset{(j,z)\in\mathcal{S}}{\operatorname{argmin}} \mathbb{E}\Big[\left(Y - \mathbb{E}[Y|X_j \leq z]\right)^2 \cdot \mathbb{1}_{X_j \leq z} + \left(Y - \mathbb{E}[Y|X_j > z]\right)^2 \cdot \mathbb{1}_{X_j > z}\Big].$$

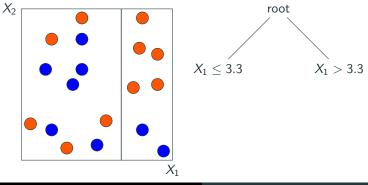


root

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^* , the threshold z^* which minimises the (quadratic) loss

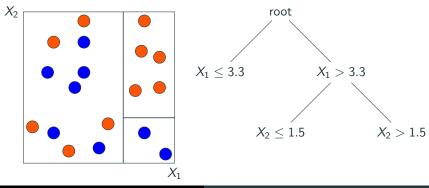
$$\begin{aligned} (j^{\star}, z^{\star}) &\in \operatorname*{argmin}_{(j,z) \in \mathcal{S}} \mathbb{E} \Big[\big(Y - \mathbb{E}[Y|X_j \leq z] \big)^2 \cdot \mathbb{1}_{X_j \leq z} \\ &+ \big(Y - \mathbb{E}[Y|X_j > z] \big)^2 \cdot \mathbb{1}_{X_j > z} \Big]. \end{aligned}$$



CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^* , the threshold z^* which minimises the (quadratic) loss

$$(j^{\star}, z^{\star}) \in \underset{(j,z)\in\mathcal{S}}{\operatorname{argmin}} \mathbb{E}\Big[\left(Y - \mathbb{E}[Y|X_j \leq z]\right)^2 \cdot \mathbb{1}_{X_j \leq z} + \left(Y - \mathbb{E}[Y|X_j > z]\right)^2 \cdot \mathbb{1}_{X_j > z}\Big].$$

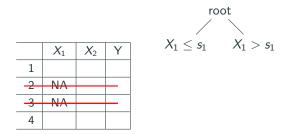


CART with missing values

root

	X_1	<i>X</i> ₂	Υ
1			
2	NA		
3	NA		
4			

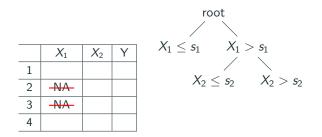
CART with missing values



1) Select variable and threshold on observed data ⁴ $\mathbb{E}\left[\left(Y - \mathbb{E}[Y|X_j \leq z, M_j = 0]\right)^2 \cdot \mathbb{1}_{X_j \leq z, M_j = 0} + \left(Y - \mathbb{E}[Y|X_j > z, M_j = 0]\right)^2 \cdot \mathbb{1}_{X_j > z, M_j = 0}\right].$

⁴ Variable selection bias (not a problem to predict): ctree function, partykit package, Hothorn, Hornik & Zeileis.

CART with missing values



- 1) Select variable and threshold on observed data ⁴ $\mathbb{E}\left[\left(Y \mathbb{E}[Y|X_j \leq z, M_j = 0]\right)^2 \cdot \mathbb{1}_{X_j \leq z, M_j = 0} + \left(Y \mathbb{E}[Y|X_j > z, M_j = 0]\right)^2 \cdot \mathbb{1}_{X_j > z, M_j = 0}\right].$
- 2) Propagate observations (2 & 3) with missing values?
- Probabilistic split: $\mathcal{B}ernoulli(\frac{\#L}{\#L+\#R})$ (Rweeka)
- Block: Send all to a side by minimizing the error (xgboost, lightgbm)
- Surrogate split: Search another variable that gives a close partition (rpart)

⁴ Variable selection bias (not a problem to predict): ctree function, partykit package, Hothorn, Hornik & Zeileis.

Missing incorporated in attribute (Twala et al. 2008)

One step: Select the variable, the threshold and propagate missing values

$$f^{\star} \in \operatorname*{argmin}_{f \in \mathcal{P}_{c,miss}} \mathbb{E}\Big[(Y - f(\widetilde{\mathbf{X}}))^2 \Big],$$

where $\mathcal{P}_{c,miss} = \mathcal{P}_{c,miss,L} \cup \mathcal{P}_{c,miss,R} \cup \mathcal{P}_{c,miss,sep}$ with

- Missing values treated like a category (well to handle $\mathbb{R} \cup \mathtt{NA}$)
- Good for informative pattern (M explains Y)
- Implementation: Duplicate the incomplete columns, and replace the missing entries once by $+\infty$ and once by $-\infty$ (J. Tibshirani) Implemented for conditional trees and forests partykit package
- \Rightarrow Target one model per pattern (2^{*d*}):

$$\mathbb{E}\left[Y\middle|\widetilde{\mathbf{X}}\right] = \sum_{\mathbf{m} \in \{0,1\}^d} \mathbb{E}\left[Y\middle|o(\mathbf{X},\mathbf{m}),\mathbf{M}=\mathbf{m}\right] \ \mathbb{1}_{\mathbf{M}=\mathbf{m}}$$
Julie Josse Dealing With Missing Values in R

Quadratic:
$$Y = X_1^2 + \varepsilon$$
, $x_{i.} \in \mathcal{N}(\mu, \Sigma_{4 imes 4})$, $ho = 0.5$, $n = 1000$

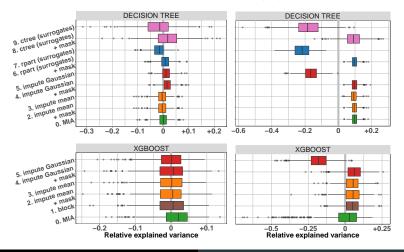
$$\widetilde{d}_n = \begin{bmatrix} 2 & 3 & \text{NA} & 0 & 15 \\ 1 & \text{NA} & 3 & 5 & 13 \\ 9 & 4 & 2 & \text{NA} & 18 \\ 7 & 6 & \text{NA} & \text{NA} & 10 \end{bmatrix}$$
$$\widetilde{d}_n + \text{mask} = \begin{bmatrix} 2 & 3 & \text{NA} & 0 & 0 & 0 & 1 & 0 & 15 \\ 1 & \text{NA} & 3 & 5 & 0 & 1 & 0 & 0 & 13 \\ 9 & 4 & 2 & \text{NA} & 0 & 0 & 0 & 1 & 18 \\ 7 & 6 & \text{NA} & \text{NA} & 0 & 0 & 1 & 1 & 10 \end{bmatrix}$$

Imputation (mean, Gaussian) + prediction with trees Imputation (mean, Gaussian) + mask + prediction with trees Trees MIA

Simulations: 20% missing values

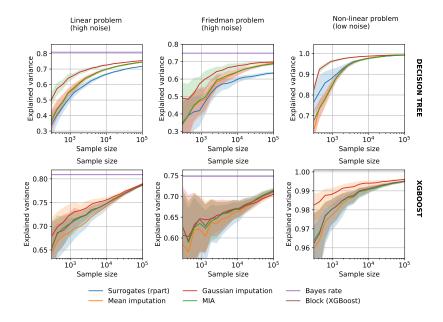
Quadratic: $Y = X_1^2 + \varepsilon$, $x_{i.} \in \mathcal{N}(\mu, \Sigma_{4 \times 4})$, $\rho = 0.5$, n = 1000

 $\begin{array}{ll} \mathsf{MCAR} \ (\mathsf{MAR}) & \mathsf{MNAR} \ - \ \mathsf{Predictive} \\ \\ M_{i,1} \sim \mathcal{B}(p) & M_{i,1} = \mathbbm{1}_{X_{i,1} > [X_1]_{(1-p)n}} \ - \ Y = X_1^2 + 3M_1 + \varepsilon \end{array}$



Julie Josse Dealing With Missing Values in R

Consistency: 40% missing values MCAR



Outline

- 1. Introduction
- 2. Single imputation
 - Single imputation methods
 - Single imputation with PCA
 - Practice
- 3. Multiple imputation
 - Underestimation of the variability Definition of MI
 - MI based on normal distribution and low rank models
 - Practice
- 4. Categorical data/Mixed/Multi-Blocks/MultiLevel
- 5. Expectation Maximization
- 6. Supervised Learning with missing values
- 7. Discussion challenges

• Few implementation of EM strategies

"The idea of imputation is both seductive and dangerous". It is

seductive because it can lull the user into the pleasurable state of believing that the data are complete after all, and it is dangerous because it lumps together situations where the problem is sufficiently minor that it can be legitimately handled in this way and situations where standard estimators applied to the imputed data have substantial biases." (Dempster & Rubin, 1983)

- Single imputation aims at completing a dataset as best as possible
- Multiple imputation aims at estimating the parameters and their variability taking into account the uncertainty of the missing values
- Single imputation can be appropriate for point estimates
- Both % of NA & structure matter (5% of NA can be an issue)

Take home message:

• Principal component methods powerful for single & multiple imputation of quanti & categorical data (rare categories): dimensionality reduction and capture similarities between obs and variables. (be careful some implementations do not handle well categorical data)

 \Rightarrow Correct inferences for analysis model based on relationships between pairs of variables

- \Rightarrow SVD can be distributed! Master Slave, privacy preserving
- \Rightarrow Requires to choose the number of dimensions S
- Handling missing values in PCA, MCA, FAMD, Multiple Factor Analysis (MFA), Correspondence analysis for contingency tables
- Preprocessing before clustering
- Package R missMDA (youtube, website, blog)

Take-home message supervised learning

- \bullet Incomplete train and test \rightarrow same imputation model
- Single mean imputation is consistent given a powerful learner
- Empirically, good imputation methods reduce the number of samples required to reach good prediction

Tree-based models :

- Missing Incorporated in Attribute optimizes not only the split but also the handling of the missing values
- Informative missing data: Adding the mask helps imputation MIA

To be done

- Nonasymptotic results
- Uncertainty associated with the prediction
- Distributional shift: No missing values in the test set?
- Prove the usefulness of methods in MNAR

Current works

• Variable selection in high dimension Adaptive bayesian SLOPE with missing values. 2019. Jiang, Bogdan, J., Miasojedow, Rockova & TraumaBase

MNAR missing values

- Contribution of causality for missing data
- Graphical Models for Processing Missing Data. 2019. Mohan, Pearl.
- Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not

At Random data. 2019. Sportisse, Boyer, J.

• Contribution of neural nets J., Prost, Scornet, Varoquaux

Other challenges

- MI theory: Good theory for regression parameters but others? Theory with other asymptotic small *n*, large *p* ?, imputation model as complex as the analysis one
- Practical imputation issues: Imputation not in agreement ($X \& X^2$), imputation out of range? problems of logical bounds (> 0), MI with large

Package missMDA:

http://factominer.free.fr/missMDA/index.html

Youtube: https://www.youtube.com/watch?v=OOM8_FH6_8o&list= PLnZgp6epRBbQzxFnQrcxg09kRt-PA66T_playlist

Article JSS: https://www.jstatsoft.org/article/view/v070i01

MOOC Exploratory Multivariate Data Analysis FactoShiny <u>**R-miss-tastic**</u> https://rmisstastic.netlify.com/R-miss-tastic

- J., I. Mayer, N. Tierney & N. Vialaneix
- Project funded by the R consortium (Infrastructure Steering Committee) 5

Aim: a reference platform on the theme of missing data management

- list existing packages
- available literature
- tutorials
- analysis workflows on data
- main actors
- \Rightarrow Federate the community

\Rightarrow Contribute!

⁵https://www.r-consortium.org/projects/call-for-proposals

Examples:

- Lecture ⁶ General tutorial : Statistical Methods for Analysis with Missing Data (Mauricio Sadinle)
- \bullet Lecture Multiple Imputation: mice by Nicole Erler 7
- Longitudinal data, Time Series Imputation (<u>Steffen Moritz</u> very active contributor of r-miss-tastic), Principal Component Methods⁸

multipleimputation_2018/erler_practical_mice_2018

⁶https://rmisstastic.netlify.com/lectures/

⁷https://rmisstastic.netlify.com/tutorials/erler_course_

⁸https://rmisstastic.netlify.com/tutorials/Josse_slides_imputation_PCA_2018.pdf

Thank you

