Missing Values Imputation - special focus on principal components methods

Julie Josse
Ecole Polytechnique, MAP573

October 1, 2018

Overview

(1) Missing values
(2) Single imputation with PCA
(3) Multiple imputation with PCA
(4) Categorical data
(5) Conclusion

Outline

(1) Missing values
(2) Single imputation with PCA
(3) Multiple imputation with PCA
(4) Categorical data
(5) Conclusion

Missing values

are everywhere: unanswered questions in a survey, lost data, damaged plants, machines that fail...

The best thing to do with missing values is not to have any" Gertrude Mary Cox.
\Rightarrow Still an issue in the "big data" area

Data integration: data from different sources

Public Assistance - Paris Hospitals

Traumabase: 15000 patients/ 250 variables

| | Center | Accident | Age | Sex | Weight | Height | BMI BP | SBP | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: |
| 1 | Beaujon | Fall | 54 | m | 85 | NR | NR | 180 | 110 |
| 2 | Lille | Other | 33 | m | 80 | 1.8 | 24.69 | 130 | 62 |
| 3 | Pitie Salpetriere | Gun | 26 | m | NR | NR | NR | 131 | 62 |
| 4 | Beaujon | AVP moto | 63 | m | 80 | 1.8 | 24.69 | 145 | 89 |
| 6 | Pitie Salpetriere | AVP bicycle | 33 | m | 75 | NR | NR | 104 | 86 |
| 7 | Pitie Salpetriere AVP pedestrian | 30 | m | NR | NR | NR | 107 | 66 | |
| 9 | HEGP | White weapon | 16 | m | 98 | 1.92 | 26.58 | 118 | 54 |
| 10 | Toulon | White weapon | 20 | m | NR | NR | NR | 124 | 73 |
| 11 | Bicetre | Fall | 61 | m | 84 | 1.7 | 29.07 | 144 | 105 |

	Sp02	Temperature	Lactates	Hb	Glasgow	Transfusion.
1	97	35.6	\langle NA \rangle	12.7	12	yes
2	100	36.5	4.8	11.1	15	no
3	100	36	3.9	11.4	3	no
4	100	36.7	1.66	13	15	yes
6	100	36	NM	14.4	15	no
7	100	36.6	NM	14.3	15	yes
9	100	37.5	13	15.9	15	yes
10	100	36.9	NM	13.7	15	no
11	100	36.6	1.2	14.2	14	no

\Rightarrow Predict the Glasgow score, whether to start a blood transfusion, to administer fresh frozen plasma, etc...
\Rightarrow Logistic regressions/Random Forests with missing
categorical/continuous values

Multi-blocks data set

L'OREAL: 100000 women in different countries - 300 variables

- Self-assessment questionnaire: life style, skin and hair characteristics, care and consumer habits
- Clinical assessments by a dermatologist: facial skin complexion, wrinkles, scalp dryness, greasiness
- Hair assessments by a hair dresser: abundance, volume, breakage, curliness
- Skin and hair photographs and measurements: sebum quantity, etc.

Contingency tables with side information

National agency for wildlife and hunting management (ONCFS)
Data: Water-bird count data, 1990-2016 from 722 wetland sites in 5 countries in North Africa
Sites and years infp: meteorological, geographical (altitude, long)

\Rightarrow Aims: Assess the effect of time on species abundances Monitor the population and assess wetlands conservation policies.
$\Rightarrow 70 \%$ of missing values in contingency tables

On going works J.J

- François Husson (Agrocampus)
- Genevieve Robin (PhD student), B. Narasimhan (Stanford): distributed matrix completion for multilevel medical data
- Genevieve Robin (PhD student), R. Tibshirani (Stanford): imputation of contingency tables with side information
- Wei Jiang (PhD student): glm with missing values and variable selection
- Erwan Scornet (Polytechnique), N. Prost (PhD student), S. Wager, G. Varoquaux (INRIA): random forest with missing values and causal inference

Ozone data set

	maxO3	T9	T12	T15	Ne 9	Ne12	Ne15	V×9	V $\times 12$	V $\times 15$	maxO3v
0601	NA	15.6	18.5	18.4	4	4	8	NA	-1.7101	-0.6946	84
0602	82	17	18.4	17.7	5	5	7	NA	NA	NA	87
0603	92	NA	17.6	19.5	2	5	4	2.9544	1.8794	0.5209	82
0604	114	16.2	NA	NA	1	1	0	NA	NA	NA	92
0605	94	17.4	20.5	NA	8	8	7	-0.5	NA	-4.3301	114
0606	80	17.7	NA	18.3	NA	NA	NA	-5.6382	-5	-6	94
0607	NA	16.8	15.6	14.9	7	8	8	-4.3301	-1.8794	-3.7588	80
0610	79	14.9	17.5	18.9	5	5	4	0	-1.0419	-1.3892	NA
0611	101	NA	19.6	21.4	2	4	4	-0.766	NA	-2.2981	79
0612	NA	18.3	21.9	22.9	5	6	8	1.2856	-2.2981	-3.9392	101
0613	101	17.3	19.3	20.2	NA	NA	NA	-1.5	-1.5	-0.8682	NA
:	.	-	.	.	.	-	-	.			
0919	NA	14.8	16.3	15.9	7	7	7	-4.3301	-6.0622	-5.1962	42
0920	71	15.5	18	17.4	7	7	6	-3.9392	-3.0642	0	NA
0921	96	NA	NA	NA	3	3	3	NA	NA	NA	71
0922	98	NA	NA	NA	2	2	2	4	5	4.3301	96
0923	92	14.7	17.6	18.2	1	4	6	5.1962	5.1423	3.5	98
0924	NA	13.3	17.7	17.7	NA	NA	NA	-0.9397	-0.766	-0.5	92
0925	84	13.3	17.7	17.8	3	5	6	0	-1	-1.2856	NA
0927	NA	16.2	20.8	22.1	6	5	5	-0.6946	-2	-1.3681	71
0928	99	16.9	23	22.6	NA	4	7	1.5	0.8682	0.8682	NA
0929	NA	16.9	19.8	22.1	6	5	3	-4	-3.7588	-4	99
0930	70	15.7	18.6	20.7	NA	NA	NA	0	-1.0419	-4	NA

http://www.airbreizh.asso.fr/
Aim: regression with missing values

Missing values problematic

A very simple way: deletion (default lm function in R) Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values

Missing values problematic

A very simple way: deletion (default lm function in R)
Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values
$X=\left(X_{\text {miss }}, X_{o b s}\right)$. Let M with $M_{i k}=1$ if $X_{i k}$ is observed and 0 otherwise. M and X have distributions.
- MCAR: probability does not depend on any values $f\left(M \mid X_{o b s}, X_{\text {miss }} ; \phi\right)=f(M ; \mid \phi)$ each entry has the same probability to be observed
- MAR: probability may depend on values on other variables $f\left(M \mid X_{o b s}, X_{\text {miss }} ; \phi\right)=f\left(M \mid X_{o b s} ; \phi\right)$
- MNAR: probability depends on the value itself $f\left(M \mid X_{o b s}, X_{m i s s} ; \phi\right)=f\left(M \mid X_{m i s s} ; \phi\right)$
\Rightarrow Ex, Age Income.

Missing values problematic

A very simple way: deletion (default lm function in R)
Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values
$X=\left(X_{\text {miss }}, X_{o b s}\right)$. Let M with $M_{i k}=1$ if $X_{i k}$ is observed and 0 otherwise. M and X have distributions.
- MCAR: probability does not depend on any values $f\left(M \mid X_{o b s}, X_{\text {miss }} ; \phi\right)=f(M ; \mid \phi)$ each entry has the same probability to be observed
- MAR: probability may depend on values on other variables $f\left(M \mid X_{o b s}, X_{\text {miss }} ; \phi\right)=f\left(M \mid X_{o b s} ; \phi\right)$
- MNAR: probability depends on the value itself $f\left(M \mid X_{o b s}, X_{\text {miss }} ; \phi\right)=f\left(M \mid X_{\text {miss }} ; \phi\right)$
\Rightarrow Ex, Age Income.
\Rightarrow Assume MAR: ignore $f\left(M \mid X_{o b s}, X_{\text {miss }} ; \phi\right)$ when doing inference.

Visualization - Multiple Correspondence Analysis

 MCA graph of the categories

Implemented in VIM, naniar (Matthias Templ, Nick Tierney) FactoMineR (YouTube): visu pattern, mechanism
Hypothesis: no Missing Not At Random (proba to have missing values depend on the underlying values)

Recommended methods

\Rightarrow Modify the estimation process to deal with missing values.
Maximum likelihood: EM algorithm to obtain point estimates + Supplemented EM (Meng \& Rubin, 1991) or Louis for their variability

Ex: Hypothesis $x_{i} \sim \mathcal{N}(\mu, \Sigma)$, point estimates with EM:

```
> library(norm)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> getparam.norm(pre,thetahat)
```

Ex: Logistic regression with missing values SAEM algorithm
library (devtools)
install_github("wjiang94/misaem")
One specific algorithm for each statistical method...

Recommended methods

\Rightarrow Modify the estimation process to deal with missing values. Maximum likelihood: EM algorithm to obtain point estimates + Supplemented EM (Meng \& Rubin, 1991) or Louis for their variability

Ex: Hypothesis $x_{i} \sim \mathcal{N}(\mu, \Sigma)$, point estimates with EM:
> library (norm)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> getparam.norm(pre,thetahat)
Ex: Logistic regression with missing values SAEM algorithm
library (devtools)
install_github("wjiang94/misaem")
One specific algorithm for each statistical method...
\Rightarrow Imputation (multiple) to get a completed data set on which you can perform any statistical method (Rubin, 1976)

Dealing with missing values

\Rightarrow Imputation to get a completed data set

$$
\begin{array}{l|c|}
\mu_{y}=0 & \hat{\mu}_{y}=0.01 \\
\sigma_{y}=1 \\
\cline { 2 - 2 }=0.6 & \hat{\sigma}_{y}=0.5 \\
\cline { 2 - 2 } & \hat{\rho}=0.30 \\
\hline
\end{array}
$$

Dealing with missing values

Wright IJ, et al. (2004). The worldwide leaf economics spectrum. Nature, 69000 species - LMA (leaf mass per area), LL (leaf lifespan), Amass (photosynthetic assimilation), Nmass (leaf nitrogen), Pmass (leaf phosphorus), Rmass (dark respiration rate)

Imputation methods

Imputation methods

- Impute by regression take into account the relationship: estimate β - impute $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i} \Rightarrow$ variance underestimated and correlation overestimated.

$$
\begin{array}{l|c|}
\mu_{y}=0 \\
\sigma_{y}=1 \\
\rho=0.6 & 0.01 \\
\cline { 1 - 2 } & 0.5 \\
\hline
\end{array}
$$

0.01
0.72
0.78

Imputation methods

- Impute by regression take into account the relationship: estimate β - impute $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i} \Rightarrow$ variance underestimated and correlation overestimated.
- Impute by stochastic reg: estimate β and σ-impute from the predictive $y_{i} \sim \mathcal{N}\left(x_{i} \hat{\beta}, \hat{\sigma}^{2}\right) \Rightarrow$ preserve distribution

$$
\begin{array}{l|c|}
\mu_{y}=0 \\
\sigma_{y}=1 \\
\rho=0.6
\end{array} \quad \begin{array}{|c|}
\hline 0.01 \\
\cline { 2 - 2 }
\end{array}
$$

0.01
0.72
0.78

0.01
0.99
0.59

Other single imputation methods

- based on Gaussian assumption: $x_{i} \sim \mathcal{N}(\mu, \Sigma)$
- Bivariate with missing on x_{1} (stochastic reg): estimate β and σ - impute from the predictive $x_{i 1} \sim \mathcal{N}\left(x_{i 2} \hat{\beta}, \hat{\sigma}^{2}\right)$
- Extension to multivariate case: estimate μ and Σ from an incomplete data with EM - impute by drawing from $\mathcal{N}(\hat{\mu}, \hat{\Sigma})$ packages Amelia, mice (conditional)
- k-nearest neighbor (package VIM, yaImpute, impute, etc)
- random forest (package missForest)
\Rightarrow Stef van Buuren webpage (mice)
\Rightarrow R miss-tatic N. T. \& J.J Task View, Nathalie Villa Vialaneix
\Rightarrow Statistical Science issue (2018) - Imbert \& Vialaneix (2018).

Outline

(1) Missing values
(2) Single imputation with PCA
(3) Multiple imputation with PCA
(4) Categorical data
(5) Conclusion

PCA (complete)

Find the subspace that best represents the data

Figure: Camel or dromedary?
\Rightarrow Best approximation with projection
\Rightarrow Best representation of the variability \Rightarrow Do not distort the distances between individuals

PCA (complete)

Find the subspace that best represents the data

Figure: Camel or dromedary? source J.P. Fénelon
\Rightarrow Best approximation with projection
\Rightarrow Best representation of the variability \Rightarrow Do not distort the distances between individuals

PCA reconstruction

\Rightarrow Minimizes distance between observations and their projection \Rightarrow Approx $X_{n \times p}$ with a low rank matrix $S<p\|A\|_{2}^{2}=\operatorname{tr}\left(A A^{\top}\right)$:

$$
\operatorname{argmin}_{\mu}\left\{\|X-\mu\|_{2}^{2}: \operatorname{rank}(\mu) \leq S\right\}
$$

PCA reconstruction

\Rightarrow Minimizes distance between observations and their projection
\Rightarrow Approx $X_{n \times p}$ with a low rank matrix $S<p\|A\|_{2}^{2}=\operatorname{tr}\left(A A^{\top}\right)$:

$$
\operatorname{argmin}_{\mu}\left\{\|X-\mu\|_{2}^{2}: \operatorname{rank}(\mu) \leq S\right\}
$$

$\begin{aligned} \operatorname{SVD} X: \quad \hat{\mu}^{\mathrm{PCA}} & =U_{n \times S} \Lambda_{S \times S}^{\frac{1}{2}} V_{p \times S}^{\prime} & F=U \Lambda^{\frac{1}{2}} \quad P C \text { - scores } \\ = & F_{n \times S} V_{p \times S}^{\prime} & V \text { principal axes - loadings }\end{aligned}$

Missing values in PCA

\Rightarrow PCA: least squares

$$
\operatorname{argmin}_{\mu}\left\{\left\|X_{n \times p}-\mu_{n \times p}\right\|_{2}^{2}: \operatorname{rank}(\mu) \leq S\right\}
$$

\Rightarrow PCA with missing values: weighted least squares

$$
\operatorname{argmin}_{\mu}\left\{\left\|W_{n \times p} *(X-\mu)\right\|_{2}^{2}: \operatorname{rank}(\mu) \leq S\right\}
$$

with $W_{i j}=0$ if $X_{i j}$ is missing, $W_{i j}=1$ otherwise; * elementwise multiplication

Many algorithms: weighted alternating least squares (Gabriel \& Zamir, 1979); iterative PCA (Kiers, 1997)

Iterative PCA

x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	NA
2.0	1.98

Iterative PCA

x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	NA
2.0	1.98
x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.00
2.0	1.98

Initialization $\ell=0: X^{0}$ (mean imputation)

Iterative PCA

x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	NA
2.0	1.98
x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.00
2.0	1.98
$\times 1$	$\widehat{x 2}$
-1.98	-2.04
-1.44	-1.56
0.15	-0.18
1.00	0.57
2.27	1.67

PCA on the completed data set $\rightarrow\left(U^{\ell}, \Lambda^{\ell}, V^{\ell}\right)$;

Iterative PCA

x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	NA
2.0	1.98
x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.00
2.0	1.98
x 1	x2
-1.98	-2.04
-1.44	-1.56
0.15	-0.18
1.00	0.57
2.27	1.67

Missing values imputed with the fitted matrix $\hat{\mu}^{\ell}=U^{\ell} \Lambda^{1 / 2^{\ell}} V^{\ell \prime}$

Iterative PCA

x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	NA
2.0	1.98
x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.00
2.0	1.98
$\times 1$	$\widehat{x 2}$
-1.98	-2.04
-1.44	-1.56
0.15	-0.18
1.00	0.57
2.27	1.67
x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.57
2.0	1.98

The new imputed dataset is $\hat{X}^{\ell}=W * X+(\mathbf{1}-W) * \hat{\mu}^{\ell}$

Iterative PCA

Iterative PCA

x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	NA
2.0	1.98
x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.57
2.0	1.98
$\times 1$	x1
-2.00	-2.01
-1.47	-1.52
0.09	-0.11
1.20	0.90
2.18	1.78
x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.90
2.0	1.98

Iterative PCA

Steps are repeated until convergence

Iterative PCA

PCA on the completed data set $\rightarrow\left(U^{\ell}, \Lambda^{\ell}, V^{\ell}\right)$
Missing values imputed with the fitted matrix $\hat{\mu}^{\ell}=U^{\ell} \Lambda^{1 / 2^{\ell}} V^{\ell \prime}$

Iterative PCA

(1) initialization $\ell=0: X^{0}$ (mean imputation)
(2) step ℓ :
(a) PCA on the completed data $\rightarrow\left(U^{\ell}, \Lambda^{\ell}, V^{\ell}\right)$;
S dimensions kept
(b) missing values are imputed with $\left(\hat{\mu}^{S}\right)^{\ell}=U^{\ell} \Lambda^{1 / 2^{\ell}} V^{\ell \prime}$ the new imputed data is $\hat{X}^{\ell}=W * X+(\mathbf{1}-W) *\left(\hat{\mu}^{S}\right)^{\ell}$
(3) steps of estimation and imputation are repeated

Iterative PCA

(1) initialization $\ell=0: X^{0}$ (mean imputation)
(2) step ℓ :
(a) PCA on the completed data $\rightarrow\left(U^{\ell}, \Lambda^{\ell}, V^{\ell}\right)$;
S dimensions kept
(b) missing values are imputed with $\left(\hat{\mu}^{S}\right)^{\ell}=U^{\ell} \Lambda^{1 / 2^{\ell}} V^{\ell \prime}$ the new imputed data is $\hat{X}^{\ell}=W * X+(\mathbf{1}-W) *\left(\hat{\mu}^{S}\right)^{\ell}$
(3) steps of estimation and imputation are repeated
$\Rightarrow \hat{\mu}$ from incomplete data: EM algo $X=\mu+\varepsilon, \varepsilon_{i j} \stackrel{i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$
with μ of low rank, $x_{i j}=\sum_{s=1}^{S} \sqrt{\tilde{\lambda}_{s}} \tilde{u}_{i s} \tilde{v}_{j s}+\varepsilon_{i j}$
\Rightarrow Completed data: good imputation (matrix completion, Netflix)

Iterative PCA

(1) initialization $\ell=0: X^{0}$ (mean imputation)
(2) step ℓ :
(a) PCA on the completed data $\rightarrow\left(U^{\ell}, \Lambda^{\ell}, V^{\ell}\right)$; S dimensions kept
(b) missing values are imputed with $\left(\hat{\mu}^{S}\right)^{\ell}=U^{\ell} \Lambda^{1 / 2^{\ell}} V^{\ell \prime}$ the new imputed data is $\hat{X}^{\ell}=W * X+(\mathbf{1}-W) *\left(\hat{\mu}^{S}\right)^{\ell}$
(3) steps of estimation and imputation are repeated
$\Rightarrow \hat{\mu}$ from incomplete data: EM algo $X=\mu+\varepsilon, \varepsilon_{i j} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$
with μ of low rank, $x_{i j}=\sum_{s=1}^{S} \sqrt{\tilde{\lambda}_{s}} \tilde{u}_{i s} \tilde{v}_{j s}+\varepsilon_{i j}$
\Rightarrow Completed data: good imputation (matrix completion, Netflix)
Reduction of variability (imputation by $U \Lambda^{1 / 2} V^{\prime}$)
Selecting S? Generalized cross-validation (Josse \& Husson, 2012)

Soft thresholding iterative SVD

\Rightarrow Overfitting issues of iterative PCA: many parameters ($U_{n \times S}$, $V_{S \times p}$)/observed values (S large - many NA); noisy data
\Rightarrow Regularized versions. Init - estimation - imputation steps:
imputation $\hat{\mu}_{i j}^{\mathrm{PCA}}=\sum_{s=1}^{S} \sqrt{\lambda_{s}} u_{i s} v_{j s}$ is replaced by
a "shrunk" impute $\hat{\mu}_{i j}^{\text {Soft }}=\sum_{s=1}^{p}\left(\sqrt{\lambda_{s}}-\lambda\right)_{+} u_{i s} v_{j s}$

$$
X=\mu+\varepsilon \quad \operatorname{argmin}_{\mu}\left\{\|W *(X-\mu)\|_{2}^{2}+\lambda\|\mu\|_{*}\right\}
$$

Softlmpute for large matrices. T. Hastie, R. Mazumber, 2015, Matrix
Completion and Low-Rank SVD via Fast Alternating Least Squares. JMLR Implemented in softImpute

Regularized iterative PCA (Josse et al., 2009)

\Rightarrow Init. - estimation - imputation steps. In missMDA (Youtube)
The imputation step:

$$
\hat{\mu}_{i j}^{\mathrm{PCA}}=\sum_{s=1}^{S} \sqrt{\lambda_{s}} u_{i s} v_{j s}
$$

is replaced by a "shrunk" imputation step (Efron \& Morris 1972):

$$
\hat{\mu}_{i j}^{\mathrm{rPCA}}=\sum_{s=1}^{S}\left(\frac{\lambda_{s}-\hat{\sigma}^{2}}{\lambda_{s}}\right) \sqrt{\lambda_{s}} u_{i s} v_{j s}=\sum_{s=1}^{S}\left(\sqrt{\lambda_{s}}-\frac{\hat{\sigma}^{2}}{\sqrt{\lambda_{s}}}\right) u_{i s} v_{j s}
$$

σ^{2} small \rightarrow regularized PCA \approx PCA
σ^{2} large \rightarrow mean imputation
$\hat{\sigma}^{2}=\frac{R S S}{\mathrm{ddl}}=\frac{n \sum_{s=S+1}^{p} \lambda_{S}}{n p-p-n S-p S+S^{2}+S} \quad\left(X_{n \times p} ; U_{n \times S} ; V_{p \times S}\right)$

Properties

\Rightarrow Very good quality of imputation. Using similarities between individuals and relationship between variables. Popular in machine learning with recommandation systems (Netflix: 99\% missing).

Model makes sense: Data $=$ structure of rank $S+$ noise
(Udell \& Townsend Nice Latent Variable Models Have Log-Rank, 2017)
\Rightarrow Different noise regime

- low noise: iterative PCA (tuning S : cross-validation, GCV)
- moderate noise: iterative regularized PCA (non-linear transformation, tuning σ, S)
- high noise (SNR low, S large): soft thresholding (tuning λ, σ) Implemented in R packages denoiseR (Josse, Wager, Sardy)

Imputation with PCA in practice

\Rightarrow Step 1: Estimation of the number of dimensions
(Cross Validation, Bro, 2008; GCV, Josse \& Husson, 2011)
> library (missMDA)
> nb <- estim_ncpPCA(don, method.cv = "Kfold")
> nb\$ncp \#2
> plot(0:5, nb\$criterion, xlab = "nb dim", ylab ="MSEP")

Imputation with PCA in practice

\Rightarrow Step 2: Imputation of the missing values

```
> res.comp <- imputePCA(don, ncp = 2)
> res.comp$completeObs[1:3, ]
    max03 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 max03v
0601 87 15.60 18.50 20.47 4 4.00 8.00 0.69 -1.71 -0.69 84
0602 82 18.51 20.88 21.81 5 5.00 7.00 -4.33 -4.00 -3.00 87
llllllllllllllll
```


Incomplete ozone

	O3	T9	T12	T15	Ne 9	Ne12	Ne15	V×9	V $\times 12$	V×15	O3v
0601	87	15.6	18.5	18.4	4	4	8	NA	-1.7101	-0.6946	84
0602	82	NA	18.4	17.7	5	5	7	NA	NA	NA	87
0603	92	NA	17.6	19.5	2	5	4	2.9544	1.8794	0.5209	82
0604	114	16.2	NA	NA	1	1	0	NA	NA	NA	92
0605	94	17.4	20.5	NA	8	8	7	-0.5	NA	-4.3301	114
0606	80	17.7	NA	18.3	NA	NA	NA	-5.6382	-5	-6	94
0607	NA	16.8	15.6	14.9	7	8	8	-4.3301	-1.8794	-3.7588	80
0610	79	14.9	17.5	18.9	5	5	4	0	-1.0419	-1.3892	NA
0611	101	NA	19.6	21.4	2	4	4	-0.766	NA	-2.2981	79
0612	NA	18.3	21.9	22.9	5	6	8	1.2856	-2.2981	-3.9392	101
0613	101	17.3	19.3	20.2	NA	NA	NA	-1.5	-1.5	-0.8682	NA
.		.	-	-	-	-	-	-	-		
		-	.	.	:			.			
0919	NA	14.8	16.3	15.9	7	7	7	-4.3301	-6.0622	-5.1962	42
0920	71	15.5	18	17.4	7	7	6	-3.9392	-3.0642	0	NA
0921	96	NA	NA	NA	3	3	3	NA	NA	NA	71
0922	98	NA	NA	NA	2	2	2	4	5	4.3301	96
0923	92	14.7	17.6	18.2	1	4	6	5.1962	5.1423	3.5	98
0924	NA	13.3	17.7	17.7	NA	NA	NA	-0.9397	-0.766	-0.5	92
0925	84	13.3	17.7	17.8	3	5	6	0	-1	-1.2856	NA
0927	NA	16.2	20.8	22.1	6	5	5	-0.6946	-2	-1.3681	71
0928	99	16.9	23	22.6	NA	4	7	1.5	0.8682	0.8682	NA
0929	NA	16.9	19.8	22.1	6	5	3	-4	-3.7588	-4	99
0930	70	15.7	18.6	20.7	NA	NA	NA	0	-1.0419	-4	NA

Complete ozone

	$\max 03$	T	12	T15	Ne	Ne 12	Ne 15	Vx9	Vx12	Vx15	
20010601	87.000	15.600	18.500	20.471	4.000	4.000	8.000	695	-1.710	-0.695	84.000
20010602	82.000	18.505	20.870	21.799	5.000	5.000	7.000	-4.330	-4.000	-3.000	87.000
20010603	92.000	15.300	17.600	19.500	2.000	3.984	3.812	2.954	1.951	0.521	82.000
20010604	114.000	16.200	19	24.693	1.000	1.000	0.000	2.044	0.347	-0.174	00
20010605	94.000	18.968	20.50	20.400	5.294	5.272	25.056	-0.500	-2.954	330	114.000
20010606	80.000	17.700	19.80	18.300	6.000	7.020	7.000	-5.638	-5.000	-6.000	94.000
20010607	79.000	16.800	15.60	14.900	7.000	8.000	6.556	-4.330	-1.879	-3.759	8
20010610	79.000	14.900	17.500	18.900	5.000	5.000	5.016	0.000	-1.042	-1.389	
20010611	101.000	16.100	19.60	21.400	2.000	4.691	4.000	-0.766	-1.026	-2.298	79
20010612	106.000	18.300	22.494	22.900	5.000	4.627	4.495	1.286	-2.298	-3.939	10
2001061	101.000	17	19	20.200	7.000	7.000	3.000	-1.500	0	-0.868	106.000
20010915	69.000	17.100	17.70	17.500	6.000	7.000	8.000	-5.196	-2.736	-1.042	1.000
20010916	71.000	15.400	18.091	16.600	4.000	5.000	5.000	-3.830	0.000	. 389	69.000
20010917	60.000	15.283	18.565	19.556	4.000	5.000	4.000	0.000	3.214	0.000	71.000
20010918	42.000	14.091	14.300	14.900	8.000	7.000	7.000	-2.500	-3.214	-2.500	60.000
20010919	65.000	14.800	16.425	15.900	7.000	7.982	7.000	-4.341	-6.062	-5.196	42.
20010920	71.000	15.500	18.000	17.400	7.000	7.000	6.000	-3.939	-3.064	0.000	65.
20010924	76.000	13.300	17.700	17.700	5.631	5.883	5.453	-0.940	-0.766	-0.500	65.
20010925	75.573	13.300	18.434	17.800	3.000	5.000	5.001	0.000	-1.000	-1.286	76
20010927	77.000	16.200	20.800	20.499	5.368	5.495	5.177	-0.695	-2.000	-1.473	71.000
20010928	99.000	18.074	22.169	23.651	3.531	3.610	3.561	1.500	0.868	0.868	93.135
20010929	83.000	19.855	22.663	23.847	5.374	4.000	3.000	-4.000	-3.759	-4.000	99.000
20010930	70.000	15.700	18.600	20.700	7.000	6.405	7.000	-2.584	-1.042	4.000	83.

> library (missMDA)
> res.comp <- imputePCA(ozo[, 1:11])
> res.comp\$comp

Cherry on the cake: PCA on incomplete data!

Individuals factor map (PCA)

Variables factor map (PCA)

> imp <- cbind.data.frame(res.comp\$completeObs, ozo[, 12])
> res.pca <- PCA(imp, quanti.sup = 1, quali.sup = 12)
> plot(res.pca, hab = 12, lab = "quali"); plot(res.pca, choix = "var")
> res.pca\$ind\$coord \#scores (principal components)

Random Forests versus PCA

	Feat1	Feat2	Feat3	Feat4	Feat5...
C1	1	1	1	1	1
C2	1	1	1	1	1
C3	2	2	2	2	2
C4	2	2	2	2	2
C5	3	3	3	3	3
C6	3	3	3	3	3
C7	4	4	4	4	4
C8	4	4	4	4	4
C9	5	5	5	5	5
C10	5	5	5	5	5
C11	6	6	6	6	6
C12	6	6	6	6	6
C13	7	7	7	7	7
C14	7	7	7	7	7
Igor	8	NA	NA	8	8
Frank	8	NA	NA	8	8
Bertrand	9	NA	NA	9	9
Alex	9	NA	NA	9	9
Yohann	10	NA	NA	10	10
Jean	10	NA	NA	10	10

Iterative Random Forests imputation

(1) Initial imputation: mean imputation - random category Sort the variables according to the amount of missing values
(2) Fit a RF $X_{j}^{o b s}$ on variables $X_{-j}^{o b s}$ and then predict $X_{j}^{\text {miss }}$
(3) Cycling through variables
(4) Repeat step 2.2 and 3 until convergence

- number of trees: 100
- number of variables randomly selected at each node \sqrt{p}
- number of iterations: 4-5

Implemented in the R package missForest (paper) missForest (Daniel J. Stekhoven, Peter Buhlmann, 2011)

Random Forests versus PCA

| | Feat1 | Feat2 | Feat3 | Feat4 | Feat5 | | | Feat1 | Feat2 | Feat3 | Feat4 |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | Feat5

\Rightarrow with Random Forests $\quad \Rightarrow$ with PCA
(Stekhoven, Buhlmann, 2011 - Bartlett, Carpenter, 2014)
\Rightarrow Non linear relationship well handled by forests

Outline

(1) Missing values
(2) Single imputation with PCA
(3) Multiple imputation with PCA
(4) Categorical data
(5) Conclusion

Single imputation methods: Danger!

$\mu_{y}=0$	0.01
$\sigma_{y}=1$	0.5
$=0.6$	0.30
Cl $\mu_{y} 95 \%$	

Confidence interval for a mean

Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ be i.i.d. independent Gaussian random with expectation μ_{y} and variance $\sigma_{y}^{2}>0$.

- The empirical mean $\bar{Y}=n^{-1} \sum_{i=1}^{n} Y_{i}$
- $\bar{Y} \sim \mathcal{N}\left(\mu_{y}, \sigma_{y}^{2} / n\right)$
- A confidence interval for μ

$$
\mathbb{P}\left(\bar{Y}-\frac{\sigma_{y}}{\sqrt{n}} z_{1-\alpha / 2} \leq \mu \leq \bar{Y}+\frac{\sigma_{y}}{\sqrt{n}} z_{1-\alpha / 2}\right)=1-\alpha
$$

Confidence interval for a mean

Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ be i.i.d. independent Gaussian random with expectation μ_{y} and variance $\sigma_{y}^{2}>0$.

- The empirical mean $\bar{Y}=n^{-1} \sum_{i=1}^{n} Y_{i}$
- $\bar{Y} \sim \mathcal{N}\left(\mu_{y}, \sigma_{y}^{2} / n\right)$
- A confidence interval for μ

$$
\mathbb{P}\left(\bar{Y}-\frac{\sigma_{y}}{\sqrt{n}} z_{1-\alpha / 2} \leq \mu \leq \bar{Y}+\frac{\sigma_{y}}{\sqrt{n}} z_{1-\alpha / 2}\right)=1-\alpha
$$

Variance unknown:

$$
\begin{gathered}
\frac{\sqrt{n}}{\widehat{\sigma}_{y}}\left(\bar{Y}-\mu_{y}\right) \sim T(n-1) \\
{\left[\bar{y}-\frac{\widehat{\sigma}_{y}}{\sqrt{n}} t_{1-\alpha / 2}(n-1), \bar{y}+\frac{\hat{\sigma}_{y}}{\sqrt{n}} t_{1-\alpha / 2}(n-1)\right]}
\end{gathered}
$$

Simulation

- Generate bivariate Gaussian data ($\mu_{y}=0, \sigma_{y}=1, \rho=0.6$)
- Put missing values on y
- Imput missing entries
- Compute the confidence interval of μ_{y} - count if the true value $\mu_{y}=0$ is in the confidence interval
- Repeat the steps 10000 times
- Give the coverage
Single imputation methods $\left[\bar{y}-q t_{n-1} \frac{\hat{\sigma}_{y}}{\sqrt{n}} ; \bar{Y}-q t_{n-1} \frac{\hat{\sigma}_{y}}{\sqrt{n}}\right]$
Mean imputation

$\mu_{y}=0$	0.01
$\sigma_{y}=1$	0.5
$\rho=0.6$	0.30
Cl $\mu_{y} 95 \%$	39.4

The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

Single imputation methods

 $\left[\bar{y}-q t_{n-1} \frac{\hat{\sigma}_{y}}{\sqrt{n}} ; \bar{Y}-q t_{n-1} \frac{\hat{\sigma}_{y}}{\sqrt{n}}\right]$
Regression imputation

$\mu_{y}=0$	0.01
$\sigma_{y}=1$	0.5
$\rho=0.6$	0.30
Cl $\mu_{y} 95 \%$	39.4

0.01
0.72
0.78
61.6

The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

Single imputation methods

$$
\left[\bar{y}-q t_{n-1} \frac{\hat{\sigma}_{y}}{\sqrt{n}} ; \bar{Y}-q t_{n-1} \frac{\hat{\sigma}_{y}}{\sqrt{n}}\right]
$$

Regression imputation

0.01
0.72
0.78
61.6

Stochastic regression imputation

$\mu_{y}=0$	0.01
$\sigma_{y}=1$	0.5
$=0.6$	0.30
$C l$	$\mu_{y} 95 \%$

The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

Single imputation methods

$$
\left[\bar{y}-q t_{n-1} \frac{\hat{\sigma}_{y}}{\sqrt{n}} ; \bar{Y}-q t_{n-1} \frac{\hat{\sigma}_{y}}{\sqrt{n}}\right]
$$

Regression imputation

0.01
0.72
0.78
61.6

-

Stochastic regression imputation

$\mu_{y}=0$	0.01
$\sigma_{y}=1$	0.5
$\rho=0.6$	0.30
${ }^{2} \mu_{y} 95 \%$	39.4

A-

0.01
0.99
0.59
70.8

The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983) \Rightarrow Standard errors of the parameters ($\hat{\sigma}_{\hat{\mu}_{y}}$) calculated from the imputed data set are underestimated

Underestimation of variance

Classical confidence interval for $\mu_{y}\left[\bar{y}-q t_{n-1} \frac{\hat{\sigma}_{y}}{\sqrt{n}} ; \bar{Y}-q t_{n-1} \frac{\hat{\sigma}_{y}}{\sqrt{n}}\right]$
Asymptotic variance with missing values (Little \& Rubin, p140):

$$
\frac{\hat{\sigma}_{y}^{2}}{n_{o b s}}\left(1-\hat{\rho}^{2} \frac{n-n_{o b s}}{n_{o b s}}\right)=\frac{\hat{\sigma}_{y}^{2}}{n}\left(1+\frac{n-n_{o b s}}{n_{o b s}}\left(1-\hat{\rho}^{2}\right)\right)
$$

\Rightarrow When the $\rho=1$, we trust the prediction and the coverage given by stochastic regression is OK.
\Rightarrow Coverage of single imputation is too low: need to take into account the uncertainty associated to the predictions.

Multiple imputation (Rubin, 1987)

Single imputation: underestimation of standard errors
\Rightarrow a single value can't reflect the uncertainty of prediction
(1) Generate M plausible values for each missing value

(2) Perform the analysis on each imputed data set: $\hat{\theta}_{m}, \widehat{\operatorname{Var}}\left(\hat{\theta}_{m}\right)$
(3) Combine the results: $\hat{\theta}=\frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{m}$

$$
T=\frac{1}{M} \sum_{m=1}^{M} \widehat{\operatorname{Var}}\left(\hat{\theta}_{m}\right)+\left(1+\frac{1}{M}\right) \frac{1}{M-1} \sum_{m=1}^{M}\left(\hat{\theta}_{m}-\hat{\theta}\right)^{2}
$$

\Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values)

Multiple imputation

Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors
(1) Generating M imputed data sets

(2) Performing the analysis on each imputed data set
(3) Combining: variance $=$ within + between imputation variance

$$
\begin{aligned}
\hat{\beta} & =\frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m} \\
T & =\frac{1}{M} \sum_{m} \widehat{\operatorname{Var}}\left(\hat{\beta}_{m}\right)+\left(1+\frac{1}{M}\right) \frac{1}{M-1} \sum_{m}\left(\hat{\beta}_{m}-\hat{\beta}\right)^{2}
\end{aligned}
$$

Multiple imputation

\Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values) Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors
(1) Generating M imputed data sets: variance of prediction

(2) Performing the analysis on each imputed data set
(3) Combining: variance $=$ within + between imputation variance

$$
\begin{aligned}
& \hat{\beta}=\frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m} \\
& T=\frac{1}{M} \sum \widehat{\operatorname{Var}}\left(\hat{\beta}_{m}\right)+\left(1+\frac{1}{M}\right) \frac{1}{M-1} \sum\left(\hat{\beta}_{m}-\hat{\beta}\right)^{2}
\end{aligned}
$$

Multiple imputation

\Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values)
Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors
(1) Generating M imputed data sets: variance of prediction

1) Variance of estimation of the parameters +2) Noise
(2) Performing the analysis on each imputed data set
(3) Combining: variance $=$ within + between imputation variance

$$
\begin{aligned}
& \hat{\beta}=\frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m} \\
& T=\frac{1}{M} \sum \widehat{\operatorname{Var}}\left(\hat{\beta}_{m}\right)+\left(1+\frac{1}{M}\right) \frac{1}{M-1} \sum\left(\hat{\beta}_{m}-\hat{\beta}\right)^{2}
\end{aligned}
$$

Joint modeling

\Rightarrow Hypothesis $x_{i .} \sim \mathcal{N}(\mu, \Sigma)$
Algorithm Expectation Maximization Bootstrap:
(1) Bootstrap rows: X^{1}, \ldots, X^{M} EM algorithm: $\left(\hat{\mu}^{1}, \hat{\Sigma}^{1}\right), \ldots,\left(\hat{\mu}^{M}, \hat{\Sigma}^{M}\right)$
(2) Imputation: $x_{i j}^{m}$ drawn from $\mathcal{N}\left(\hat{\mu}^{m}, \hat{\Sigma}^{m}\right)$

Easy to parallelized. Implemented in Amelia (website)

Amelia Earhart

Fully conditional modeling

\Rightarrow Hypothesis: one model/variable
(1) Initial imputation: mean imputation
(2) For a variable j
2.2 Imputation of the missing values in variable j with a model of X_{j} on the other X_{-j} : stochastic regression $x_{i j}$ from

$$
\mathcal{N}\left(\left(x_{i,-j}\right)^{\prime} \hat{\beta}^{-j}, \hat{\sigma}^{-j}\right)
$$

(3) Cycling through variables
\Rightarrow Iteratively refine the imputation.
\Rightarrow With continuous variables and a regression/variable: $\mathcal{N}(\mu, \Sigma)$

Implemented in mice (website) and Python
"There is no clear-cut method for determining whether the MICE algorithm has converged"

Fully conditional modeling

\Rightarrow Hypothesis: one model/variable
(1) Initial imputation: mean imputation
(2) For a variable j
$2.1\left(\hat{\beta}^{-j}, \hat{\sigma}^{-j}\right)$ drawn from a Bootstrap: $\left(\hat{\beta}^{-j}, \hat{\sigma}^{-j}\right)^{1}, \ldots,\left(\hat{\beta}^{-j}, \hat{\sigma}^{-j}\right)^{M}$
2.2 Imputation of the missing values in variable j with a model of X_{j} on the other X_{-j} : stochastic regression $x_{i j}$ from

$$
\mathcal{N}\left(\left(x_{i,-j}\right)^{\prime} \hat{\beta}^{-j}, \hat{\sigma}^{-j}\right)
$$

(3) Cycling through variables

Get M imputed data
\Rightarrow Iteratively refine the imputation.
\Rightarrow With continuous variables and a regression/variable: $\mathcal{N}(\mu, \Sigma)$

Implemented in mice (website) and Python
"There is no clear-cut method for determining whether the MICE algorithm has converged"

Joint / Conditional modeling

\Rightarrow Both seen imputed values are drawn from a Joint distribution (even if joint does not exist)
\Rightarrow Conditional modeling takes the lead?

- Flexible: one model/variable. Easy to deal with interactions and variables of different nature (binary, ordinal, categorical...)
- Many statistical models are conditional models!
- Tailor to your data
- Appears to work quite well in practice
\Rightarrow Drawbacks: one model/variable... tedious...

Joint / Conditional modeling

\Rightarrow Both seen imputed values are drawn from a Joint distribution
(even if joint does not exist)
\Rightarrow Conditional modeling takes the lead?

- Flexible: one model/variable. Easy to deal with interactions and variables of different nature (binary, ordinal, categorical...)
- Many statistical models are conditional models!
- Tailor to your data
- Appears to work quite well in practice
\Rightarrow Drawbacks: one model/variable... tedious...
\Rightarrow What to do with high correlation or when $n<p$?
- JM shrinks the covariance $\Sigma+k \mathbb{I}$ (selection of k ?)
- CM: ridge regression or predictors selection/variable \Rightarrow a lot of tuning ... not so easy ...

Multiple imputation with Bootstrap/Bayesian PCA

$$
x_{i j}=\mu_{i j}+\varepsilon_{i j}=\sum_{s=1}^{S} \sqrt{\tilde{\lambda}_{s}} \tilde{u}_{i s} \tilde{j}_{j s}+\varepsilon_{i j}, \varepsilon_{i j} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

(1) Variability of the parameters, M plausible: $\left(\hat{\mu}_{i j}\right)^{1}, \ldots,\left(\hat{\mu}_{i j}\right)^{M}$ Bootstrap - Iterative PCA
(2) Noise: for $m=1, \ldots, M$, missing values $x_{i j}^{m}$ drawn $\mathcal{N}\left(\hat{\mu}_{i j}^{m}, \hat{\sigma}^{2}\right)$

Implemented in missMDA (website)

François Husson

Multiple imputation in practice

\Rightarrow Step 1: Generate M imputed data sets

```
> library(Amelia)
> res.amelia <- amelia(don, m = 100)
> library(mice)
> res.mice <- mice(don, m = 100, defaultMethod = "norm.boot")
> library(missMDA)
> res.MIPCA <- MIPCA(don, ncp = 2, nboot = 100)
> res.MIPCA$res.MI
```


Multiple imputation in practice

\Rightarrow Step 2: visualization

Observed and Imputed values of T12

Observed versus Imputed Values of maxO3


```
# library(Amelia)
> res.amelia <- amelia(don, m = 100)
> compare.density(res.amelia, var = "T12")
> overimpute(res.amelia, var = "max03")
# library(missMDA)
res.over<-Overimpute(res.MIPCA)
```


Multiple imputation in practice

\Rightarrow Step 2: visualization
\Rightarrow Individuals position (and variables) with other predictions

Regularized iterative PCA
\Rightarrow reference configuration

Multiple imputation in practice

\Rightarrow Step 2: visualization
\Rightarrow Individuals position (and variables) with other predictions

Regularized iterative PCA
\Rightarrow reference configuration

Multiple imputation in practice

\Rightarrow Step 2: visualization
\Rightarrow Individuals position (and variables) with other predictions

Regularized iterative PCA
\Rightarrow reference configuration

PCA representation

Individuals factor map (PCA)

Variables factor map (PCA)

> imp <- cbind.data.frame(res.comp\$completeObs, ozo[, 12])
> res.pca <- PCA(imp,quanti.sup = 1, quali.sup = 12)
> plot(res.pca, hab =12, lab = "quali"); plot(res.pca, choix = "var")
> res.pca\$ind\$coord \#scores (principal components)

Multiple imputation in practice

\Rightarrow Step 2: visualization

```
> res.MIPCA <- MIPCA(don, ncp = 2)
> plot(res.MIPCA, choice = "ind.supp"); plot(res.MIPCA, choice = "var")
```

Supplementary projection

Variable representation

\Rightarrow Percentage of NA?

Multiple imputation in practice

\Rightarrow Step 3. Regression on each table and pool the results $\hat{\beta}=\frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m}$

$$
T=\frac{1}{M} \sum_{m} \widehat{\operatorname{Var}}\left(\hat{\beta}_{m}\right)+\left(1+\frac{1}{M}\right) \frac{1}{M-1} \sum_{m}\left(\hat{\beta}_{m}-\hat{\beta}\right)^{2}
$$

```
> library(mice)
> res.mice <- mice(don, m = 100)
> imp.micerf <- mice(don, m = 100, defaultMethod = "rf")
> lm.mice.out <- with(res.mice, lm(max03 ~ T9+T12+T15+Ne9+...+Vx15+max03v))
> pool.mice <- pool(lm.mice.out)
> summary(pool.mice)
```

	est	se	t	df	$\operatorname{Pr}(>\|\mathrm{t}\|)$	lo 95	hi 95	nmis	fmi	lambda
(Intercept)	19.31	16.30	1.18	50.48	0.24	-13.43	52.05	NA	0.46	0.44
T9	-0.88	2.25	-0.39	26.43	0.70	-5.50	3.75	37	0.71	0.69
T12	3.29	2.38	1.38	27.54	0.18	-1.59	8.18	33	0.70	0.68
$\ldots \ldots$										
Vx15	0.23	1.33	0.17	39.00	0.87	-2.47	2.93	21	0.57	0.55
max03v	0.36	0.10	3.65	46.03	0.00	0.16	0.56	12	0.50	0.48

Outline

(1) Missing values
(2) Single imputation with PCA
(3) Multiple imputation with PCA
(4) Categorical data
(5) Conclusion

Categorical data

Survey data

region		sex	age	year	edu	drunk		alcohol		g
Ile de France	:8120	F:29776	18_25: 6920	2005:27907	E1:12684	0	:44237	<1/m	12889	0
Rhone Alpes	:5421	M:23165	26_34: 9401	2010:25034	E2:23521	1-2	4952	0	6133	0
Provence Alpes	:4116		35_44:10899		E3:6563	10-19	839	1-2/m:	7583	10
Nord Pas de Calais	:3819		45_54: 9505		E4:10100	20-29	212	1-2/w:	9526	
Pays de Loire	:3152		55_64: 9503		NA : 73	3-5	1908	3-4/w:	6815	
Bretagne	:3038		65_+ : 6713			30+	404	5-6/w:	3402	
(Other)	:25275					6-9	389	7/w	6593	

binge
<2/m: 10323
0 :34345
1/m : 6018
1/w : 1800
7/w : 374
NA : 81

Pbsleep
Never:20605
Often: 10172
Rare :22134
NA: 30

Tabac
Frequent : 9176
Never : 39080
Occasional: 4588
NA: 97

INPES http://www.inpes.sante.fr
Principal components method: Multiple Correpondence Analysis Single imputation based on MCA for categorical data

Multiple Correspondence Analysis (MCA)

$X_{n \times m} m$ categorical variables coded with indicator matrix A

For a category c, the frequency of the category: $p_{c}=n_{c} / n$.
A SVD on weighted matrix: $Z=\frac{1}{\sqrt{m n}}\left(A-1 p^{T}\right) D_{p}^{-1 / 2}=U \Lambda V^{\prime}$
The PC $\left(F=U \Lambda^{1 / 2}\right)$ satisfies: $\arg \max _{F_{s} \in \mathbb{R}^{n}} \frac{1}{m} \sum_{j=1}^{m} \eta^{2}\left(F_{s}, X_{j}\right)$

$$
\eta^{2}\left(F, X_{j}\right)=\frac{\sum_{c=1}^{C_{j}} n_{c}\left(F_{. c}-F_{. .}\right)^{2}}{\sum_{i=1}^{n} \sum_{c=1}^{C_{j}}\left(F_{i c}\right)^{2}}=\frac{\text { RSS between }}{\text { RSS tot }}
$$

Benzecri, 1973 : "In data analysis the mathematical problems reduces to computing eigenvectors; all the science (the art) is in finding the right matrix to diagonalize"

Regularized iterative MCA (Chavent et al., 2012)

 Iterative MCA algorithm:| | V1 | V2 | V3 | \ldots | V14 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ind 1 | a | NA | g | \ldots | u |
| ind 2 | NA | f | g | | u |
| ind 3 | a | e | h | | v |
| ind 4 | a | e | h | | v |
| ind 5 | b | f | h | | u |
| ind 6 | c | f | h | | u |
| ind 7 | c | f | NA | | v |
| \ldots | \ldots | \ldots | \ldots | | \ldots |
| ind 1232 | c | f | h | | v |

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	\ldots
ind 1	1	0	0	NA	NA	1	0	\ldots
ind 2	NA	NA	NA	0	1	1	0	\ldots
ind 3	1	0	0	1	0	0	1	\ldots
ind 4	1	0	0	1	0	0	1	\ldots
ind 5	0	1	0	0	1	0	1	\ldots
ind 6	0	0	1	0	1	0	1	\ldots
ind 7	0	0	1	0	1	NA	NA	\ldots
\ldots								
ind 1232	0	0	1	0	1	0	1	\ldots

Regularized iterative MCA (Chavent et al., 2012)

 Iterative MCA algorithm:(1) initialization: imputation of the indicator matrix (proportion)

	V1	V2	V3	\ldots	V14
ind 1	a	NA	g	\ldots	u
ind 2	NA	f	g		u
ind 3	a	e	h		v
ind 4	a	e	h		v
ind 5	b	f	h		u
ind 6	c	f	h		u
ind 7	c	f	NA		v
\ldots	\ldots	\ldots	\ldots		\ldots
ind 1232	c	f	h		v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	\ldots
ind 1	1	0	0	0.41	0.59	1	0	\cdots
ind 2	0.20	0.30	0.50	0	1	1	0	\cdots
ind 3	1	0	0	1	0	0	1	\cdots
ind 4	1	0	0	1	0	0	1	\cdots
ind 5	0	1	0	0	1	0	1	\cdots
ind 6	0	0	1	0	1	0	1	\cdots
ind 7	0	0	1	0	1	0.27	0.78	\cdots
\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots	\cdots
ind 1232	0	0	1	0	1	0	1	\ldots

Regularized iterative MCA (Chavent et al., 2012)

 Iterative MCA algorithm:(1) initialization: imputation of the indicator matrix (proportion)
(2) iterate until convergence
(a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$

	V1	V2	V3	\ldots	V14
ind 1	a	NA	g	\ldots	u
ind 2	NA	f	g		u
ind 3	a	e	h		v
ind 4	a	e	h		v
ind 5	b	f	h		u
ind 6	c	f	h		u
ind 7	c	f	NA		v
\ldots	\ldots	\ldots	\ldots		\ldots
ind 1232	c	f	h		v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	\ldots
ind 1	1	0	0	0.41	0.59	1	0	\cdots
ind 2	0.20	0.30	0.50	0	1	1	0	\ldots
ind 3	1	0	0	1	0	0	1	\ldots
ind 4	1	0	0	1	0	0	1	\cdots
ind 5	0	1	0	0	1	0	1	\cdots
ind 6	0	0	1	0	1	0	1	\ldots
ind 7	0	0	1	0	1	0.27	0.78	\ldots
\ldots								
ind 1232	0	0	1	0	1	0	1	\ldots

Regularized iterative MCA (Chavent et al., 2012)

 Iterative MCA algorithm:(1) initialization: imputation of the indicator matrix (proportion)
(2) iterate until convergence
(a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$
(b) imputation with the fitted matrix $\hat{\mu}=U_{S} \Lambda_{S}^{1 / 2} V_{S}^{\prime}$

	V1	V2	V3	\ldots	V14
ind 1	a	NA	g	\ldots	u
ind 2	NA	f	g		u
ind 3	a	e	h		v
ind 4	a	e	h		v
ind 5	b	f	h		u
ind 6	c	f	h		u
ind 7	c	f	NA		v
\ldots	\ldots	\ldots	\ldots		\ldots
ind 1232	c	f	h		v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	\ldots
ind 1	1	0	0	0.65	0.35	1	0	\cdots
ind 2	0.11	0.20	0.69	0	1	1	0	\ldots
ind 3	1	0	0	1	0	0	1	\ldots
ind 4	1	0	0	1	0	0	1	\cdots
ind 5	0	1	0	0	1	0	1	\ldots
ind 6	0	0	1	0	1	0	1	\ldots
ind 7	0	0	1	0	1	0.30	0.40	\ldots
\ldots								
ind 1232	0	0	1	0	1	0	1	\ldots

Regularized iterative MCA (Chavent et al., 2012)

 Iterative MCA algorithm:(1) initialization: imputation of the indicator matrix (proportion)
(2) iterate until convergence
(a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$
(b) imputation with the fitted matrix $\hat{\mu}=U_{S} \Lambda_{S}^{1 / 2} V_{S}^{\prime}$
(c) column margins are updated

	V1	V2	V3	\ldots	V14
ind 1	a	NA	g	\ldots	u
ind 2	NA	f	g		u
ind 3	a	e	h		v
ind 4	a	e	h		v
ind 5	b	f	h		u
ind 6	c	f	h		u
ind 7	c	f	NA		v
\ldots	\ldots	\ldots	\ldots		\ldots
ind 1232	c	f	h		v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	\ldots
ind 1	1	0	0	0.65	0.35	1	0	\ldots
ind 2	0.11	0.20	0.69	0	1	1	0	\ldots
ind 3	1	0	0	1	0	0	1	\ldots
ind 4	1	0	0	1	0	0	1	\ldots
ind 5	0	1	0	0	1	0	1	\ldots
ind 6	0	0	1	0	1	0	1	\ldots
ind 7	0	0	1	0	1	0.30	0.40	\ldots
\ldots								
ind 1232	0	0	1	0	1	0	1	\ldots

Regularized iterative MCA (Chavent et al., 2012)

 Iterative MCA algorithm:(1) initialization: imputation of the indicator matrix (proportion)
(2) iterate until convergence
(a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$
(b) imputation with the fitted matrix $\hat{\mu}=U_{S} \wedge_{S}^{1 / 2} V_{S}^{\prime}$
(c) column margins are updated

	V1	V2	V3	\ldots	V14
ind 1	a	NA	g	\ldots	u
ind 2	NA	f	g		u
ind 3	a	e	h		v
ind 4	a	e	h		v
ind 5	b	f	h		u
ind 6	c	f	h		u
ind 7	c	f	NA		v
\ldots	\ldots	\ldots	\ldots		\ldots
ind 1232	c	f	h		v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	\ldots
ind 1	1	0	0	0.71	0.29	1	0	\ldots
ind 2	$\mathbf{0 . 1 2}$	$\mathbf{0 . 2 9}$	0.59	0	1	1	0	\ldots
ind 3	1	0	0	1	0	0	1	\ldots
ind 4	1	0	0	1	0	0	1	\ldots
ind 5	0	1	0	0	1	0	1	\ldots
ind 6	0	0	1	0	1	0	1	\ldots
ind 7	0	0	1	0	1	$\mathbf{0 . 3 7}$	$\mathbf{0 . 6 3}$	\ldots
\ldots								
ind 1232	0	0	1	0	1	0	1	\ldots

\Rightarrow the imputed values can be seen as degree of membership
library(missMDA) ; ?imputeMCA

Regularized iterative MCA (Chavent et al., 2012)

 Iterative MCA algorithm:(1) initialization: imputation of the indicator matrix (proportion)
(2) iterate until convergence
(a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$
(b) imputation with the fitted matrix $\hat{\mu}=U_{S} \wedge_{S}^{1 / 2} V_{S}^{\prime}$
(c) column margins are updated

	V1	V2	V3	\ldots	V14
ind 1	a	e	g	\ldots	u
ind 2	c	f	g		u
ind 3	a	e	h		v
ind 4	a	e	h		v
ind 5	b	f	h		u
ind 6	c	f	h		u
ind 7	c	f	g		v
\ldots	\ldots	\ldots	\ldots		\ldots
ind 1232	c	f	h		v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	\ldots
ind 1	1	0	0	0.71	0.29	1	0	\cdots
ind 2	0.12	0.29	0.59	0	1	1	0	\cdots
ind 3	1	0	0	1	0	0	1	\cdots
ind 4	1	0	0	1	0	0	1	\cdots
ind 5	0	1	0	0	1	0	1	\cdots
ind 6	0	0	1	0	1	0	1	\cdots
ind 7	0	0	1	0	1	0.37	0.63	\cdots
\ldots								
ind 1232	0	0	1	0	1	0	1	\ldots

Two ways to obtain categories: majority or draw

Multiple imputation with MCA

(1) Variability of the parameters: M sets $\left(U_{n \times S}, \Lambda_{S \times S}, V_{m \times S}^{\top}\right)$ using a non-parametric bootstrap

\hat{X}_{2}

1	0	\cdots	1	0	0
1	0	\cdots	1	0	0
1	0	\cdots	0.60	0.2	0.20
0.26	0.74		0	0	1
0	1		0	0	1

\hat{X}_{M}

1	0	\cdots	1	0
1	0	\cdots	1	0
1	0	\cdots	0.11	0.7
0.20	0.80		0	0
0	1		0	0

(2) Categories drawn from multinomial disribution using the values in $\left(\hat{X}_{m}\right)_{1 \leq m \leq M}$

y	\cdots	Attack
y	\cdots	Attack
y	\cdots	Suicide
n	\cdots	Accident
n	\cdots	S

y	\cdots	Attack
y	\cdots	Attack
y	\cdots	Attack
n	\cdots	Accident
n	\cdots	B

y	\cdots	Attack
y	\cdots	Attack
y	\cdots	Suicide
n	\cdots	Accident
n	\ldots	Suicide

Multiple imputation for categorical data

\Rightarrow Joint modeling:

- Log-linear model (Schafer, 1997) (cat): pb many levels
- Latent class models (Vermunt, 2014) - nonparametric Bayesian (Si \& Reiter, 2014, Murray \& Reiter, 2016) (MixedDataImpute, NPBayesImpute, NestedCategBayesImpute)
\Rightarrow Conditional model: logistic, multinomial logit, forests (mice)
\Rightarrow MIMCA provides valid inference (ex. logistic reg with missing) applied to data of various size (many levels, rare levels)

Time (seconds)	Titanic	Galetas	Income
rows-variables-levels	$(2000-4-4)$	$(1000-4-11)$	$(6000-14-9)$
MIMCA	2.750	8.972	58.729
Loglinear	0.740	4.597	NA
Nonparametric bayes	10.854	17.414	143.652
Cond logistic	4.781	38.016	881.188
Cond forests	265.771	112.987	6329.514

Outline

(1) Missing values
(2) Single imputation with PCA
(3) Multiple imputation with PCA
(4) Categorical data
(5) Conclusion

To conclude

Take home message:

- "The idea of imputation is both seductive and dangerous. It is seductive because it can lull the user into the pleasurable state of believing that the data are complete after all, and it is dangerous because it lumps together situations where the problem is sufficiently minor that it can be legitimately handled in this way and situations where standard estimators applied to the real and imputed data have substantial biases." (Dempster and Rubin, 1983)
- Single imputation aims to complete a dataset as best as possible (prediction)
- Multiple imputation aims to perform other statistical methods after and to estimate parameters and their variability taking into account the missing values uncertainty
- Single imputation can be appropriate for point estimates

To conclude

Take home message:

- Principal component methods powerful for single \& multiple imputation of quanti \& categorical data: dimensionality reduction and capture similarities between obs and variables.
\Rightarrow Correct inferences for analysis model based on relationships between pairs of variables
\Rightarrow SVD can be distributed! Master - Slave, privacy preserving
\Rightarrow Requires to choose the number of dimensions S
- Handling missing values in PCA, MCA, FAMD, Multiple Factor Analysis (MFA), Correspondence analysis for contingency tables
- Preprocessing before clustering
- Package R missMDA (youtube, website, blog)

Challenges

$\Rightarrow \mathrm{MI}$ theory:

- Imputation model as complex as the analysis one (interaction)
- Good theory for regression parameters: others?
- MI theory with new asymptotic small n, large p ?
\Rightarrow Still an active area of research
\Rightarrow Imputation/Multiple imputation for prediction.
\Rightarrow Variable selection
\Rightarrow Some practical issues:
- Imputation not in agreement $\left(X\right.$ and $\left.X^{2}\right)$: missing passive, Imputation out of range?, Problems of logical bounds (>0)
- Multiple imputation is appealing but ... with large data?

