
ST 790, Homework 2
Spring 2017

1. Let Z = (Y1, Y2), where Y1 and Y2 are categorical variables such that Y1 takes on values in
{1, ... , G} and Y2 takes on values in {1, ... , H}. Let

θgh = pr(Y1 = g, Y2 = h), g = 1, ... , G, h = 1, ... , H, (1)

subject to the constraint
G∑

g=1

H∑
h=1

θgh = 1. (2)

(a) Suppose we have a sample of full data, (Yi1, Yi2), i = 1, ... , N. Show that the MLE for θgh
in (1) is given by

θ̂gh = N−1
N∑

i=1

I(Yi1 = g, Yi2 = h);

that is, the sample proportion for g = 1, ... , G, h = 1, ... , H. Be sure to take into account the
constraint (2).

(b) Now suppose that it is possible for either Y1 or Y2 to be missing. Define as usual R =
(R1, R2)T , taking possible values r , and suppose that there are three possible situations: (i)
Y1 and Y2 are both observed, r = (1, 1)T ; (ii) Y1 is observed, Y2 is missing, r = (1, 0)T ;
and (iii) Y1 is missing, Y2 is observed, r = (0, 1)T . The observed data are then (Ri , Z(Ri )i ),
i = 1, ... , N, which may be written as (Ri1, Ri1Yi1, Ri2, Ri2Yi2), i = 1, ... , N.

Assume that the mechanism governing this missingness is MAR. Show how to use the EM
algorithm to obtain the MLE for θgh, g = 1, ... , G, h = 1, ... , H, based on the observed data.
Specifically, indexing iterations by t , given the t th iterate, provide explicit expressions for the
E-step and M-step to obtain the (t + 1)th iterate.

(c) In your favorite programming language, write a program to implement the EM algorithm
you derived in (b) and to obtain standard errors for the resulting estimates of θgh using a
nonparametric bootstrap. Try it out on the data set mulitnom.dat available (with missing
values indicated by “NA”) on the course website, for which G = 3 and H = 2. Turn in your
program and the results.

2. In the argument justifying the EM algorithm on page 63 of the notes, it is necessary to show
the equality in (3.42), namely,

Eθ′

[
log{pZ (Zi ; θ)}|Ri , Z(Ri )i

]
=
∑

r

I(Ri = r ) Eθ′

[
log{pZ (Zi ; θ)}|Z(r )i

]
.

Provide a full argument demonstrating this equality.

3. On the course webpage, you will find data from a multicenter clinical trial carried out to
compare an experimental (active) treatment, interferon-α, with a placebo for the treatment
of patients with age-related macular degeneration (AMD). AMD is a common eye condition
and leading cause of vision loss among people age 50 and older. It causes damage to the
macula, a spot near the center of the retina and the part of the eye needed for sharp, central
vision. Patients with AMD progressively lose vision, at varying rates.
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In the trial, visual acuity was assessed at baseline (week 0) and then at clinic visits at 4,
12, 24, and 52 weeks through patients’ ability to read lines of letters on standardized vision
charts. The charts display lines of five letters of decreasing size, which the patient must
read from top (largest letters) to bottom (smallest letters). The raw visual acuity measure is
the total number of letters correctly read. In this problem, we will focus on the visual acuity
measure as the outcome of interest.

Another measure is the number of “lines of vision,” where a line of vision is one with at least
four letters correctly read. In the trial, this was also recorded at baseline and weeks 4, 12,
24, and 52 weeks. We will not consider this measure in this problem.

The trial involved N = 240 participants, each of whom was to provide these measures at
baseline and 4, 12, 24 , and 52 weeks after randomization to placebo or active treatment.
However, as usual, not all participants have full data. Most of those who do not have full data
do not because they dropped out of the trial prior to completing all four post-baseline study
visits. In addition, some subjects have intermittently missing visits.

On the course website, you will find data sets armd.dat, with missing values indicated using
the SAS “.” convention, and armd.R.dat, with missing values indicated by “NA.” The columns
are (1) patient ID number; (2) baseline lines of vision; (3)-(6) change from baseline lines
of vision at 4, 12 24, and 52 weeks; (7)-(11) visual acuity at baseline, 4, 12, 24, and 52
weeks; (12) lesion grade; and (13) treatment, coded as 1 (placebo) and 4 (active treatment).
These data sets are in the “wide” format of one record per individual. As noted above, we
are interested in an analysis of the visual acuity outcomes in columns (7)-(11).

Here, the full data are Z = (A, Y1, Y2, Y3, Y4, Y5), where Y1 is visual acuity at baseline, and
Y2, ... , Y5 are visual acuity at weeks 4, 12, 24, and 52, and A is the treatment indicator such
that A = 0 if a patient was assigned to placebo an A = 1 if assigned to active treatment.
Letting Y = (Y1, ... , Y5)T and treating the visual acuity measures as continuous, it is not
unreasonable to assume that Y has an approximate multivariate normal distribution with
possibly different mean vectors for each treatment. (Given that this is a clinical trial, by
randomization, the means at baseline should be the same for each treatment, but we ignore
this aspect here.)

We thus assume the following full data model: Although the mean vectors may differ between
the treatments, the covariance matrix is the same for each treatment. The model can be
expressed as

Y ∼ N (µ0,Σ) for placebo, Y ∼ N (µ1,Σ) for active treatment, (3)

where µ0 = (µ01, ... ,µ05)T and µ1(µ11, ... ,µ15)T are (5× 1) vectors of means whose compo-
nents may differ, and Σ is the assumed common (5× 5) covariance matrix.

Our objective is to fit the model (3) based on the observed data from the trial. As noted
above, Z is not fully observed for some trial participants; while A and Y1 are observed on
everyone, Y2, ... , Y5 can be missing, either because of dropout or due to intermittent missed
visits. Note that, if we had a sample of full data, (Yi , Ai ), i = 1, ... , N, we could fit (3) to these
data by fitting

Yij = µ0j + βjAi + εij , εi = (εi1, ... , εi5)T ∼ N (0,Σ), j = 1, ... , 5, i = 1, ... , N, (4)

where βj = µ1j − µ0j . Here (4) is simply a reparameterization of (3). We do not assume
any particular structure for Σ (e.g., compound symmetric), so Σ is a symmetric matrix with
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15 distinct variance and covariance parameters (i.e., an “unstructured” covariance specifica-
tion).

As demonstrated in EXAMPLE 2 in Chapter 3 of the notes in the simpler case of a bivariate
normal, the density of any subset of Y is also normal, so that, under MAR, the observed
data likelihood based on (3) boils down to the likelihood for the available data. Accordingly,
the observed data likelihood can be maximized directly by fitting model (4) to the available
data. This can be implemented using proc mixed in SAS with the method=ml option in the
proc mixed statement and type=un in the repeated statement, or using the gls function in
the nlme package in R with the method=“ML” option and corSymm covariance structure. The
only difference between the code for the example and model (4) is the specification of the
slightly more complex model.

(a) Summarize the distinct patterns of missingness in the observed data. E.g., how many trial
participants have full data? How many participants exhibit each of the observed patterns?
Hint: If you are using R, the mice package has a handy function, md.pattern, that takes as
input the relevant columns of a data frame or matrix and outputs a summary of the patterns.
Alternatively, there are many more sophisticated packages in R to visualize missing data, for
example, vim. If you are using SAS, proc mi creates a similar summary automatically.

(b) Using your favorite software, fit (4) to the observed data.

(c) Using your favorite software, fit (4) to the data from participants who have full data, thus
implementing a complete case analysis.

(d) Using your favorite software, create an imputed data set using the Last Observation
Carried Forward (LOCF) technique. That is, for participants who drop out, replace their
missing visual acuity measures by the last observed value. For intermittent missing values,
fill these in using the most recent observed values. Fit (4) to these data.

(e) Of primary interest in the trial was inference on β5, the difference in mean visual acuity at
one year (52 weeks). Compare the inferences on this quantity based on each of the analyses
in (b) - (d).

(f) We will now fit (3) separately by treatment group so that we can compare direct maximiza-
tion of the observed data likelihood to using the EM algorithm under MAR. (The software we
have discussed for the latter only fits a single multivariate normal.) When considered sep-
arately by treatment, the model for the full data for participants i who were assigned to
treatment a (i.e., for whom Ai = a), is

Yij = µaj + εij , (5)

where a = 0 or 1, and all other model components are as in (4). Fit (5) to the available data
on each treatment separately using SAS proc mixed or the R gls function, thus obtaining
estimates of µ0 and µ1 and estimates of Σ separately by treatment.

(g) Using either SAS proc mi or the norm package in R, fit each model in (3) based on the
observed data using the EM algorithm, thus obtaining estimates of µ0 and µ1 and estimates
of Σ separately by treatment.

(h) Compare your estimates from (f) and (g). Do they agree? Should they?

4. Consider the situation of EXAMPLE 4, in which Z = (Y1, Y2),

Y = (Y1, Y2)T ∼ N (µ,Σ), µ = (µ1,µ2)T , Σ =
(

σ2
1 σ12

σ12 σ2
2

)
,
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θ = (µ1,µ2,σ2
1,σ12,σ2

2)T , where Σ is positive definite. Suppose that we are interested in
inference on µ = (µ1,µ2)T , and, as in the example, that Y1 is always observed and only Y2 is
possibly missing.

Let SF
µ (Z ) be the component of the full data score vector (3.2) corresponding to partial deriva-

tives of the full data log likelihood with respect to µ. Similarly, let Sµ(R, Z(R)) be the analogous
component of the observed data score vector (3.31).

(a) Find Sµ(Z ) by direct differentiation of the observed data loglikelihood.

(b) Find an expression for SF
µ (R, Z(R)), and show that, under MAR, it is indeed true that

Sµ(R, Z(R)) = Eθ{SF
µ (Z )|R, Z(R)} (6)

as in (3.33). That is, show that the expression you found in (a) is identical to the right hand
side of (6) under a MAR missingness mechanism.

(c) Now consider the components of the observed information matrix in (3.76)-(3.78) on page
80. As noted in the discussion there, under MAR, it can be shown that the expectations of
these terms are not necessarily equal to zero, so that, as discussed on page 81, the usual
approximate standard errors based on the expected information matrix reported by standard
software are not appropriate.

To partially verify this claim, consider (3.77) and (i) derive the expression for

− ∂2`

∂µ∂σ12

given in (3.77), and then (ii) derive an expression for the (unconditional) expectation of (3.77)
in terms of π = pr(R = 1) > 0 and Σ and argue that a necessary and sufficient condition for
the expectation of (3.77) to be equal to zero is that the missingness mechanism is MCAR,
so that the expectation need not be equal to zero under MAR.
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