
CHAPTER 7 ST 790, MISSING DATA

7 Sensitivity Analysis

A recurrent theme underlying methodology for analysis in the presence of missing data is the need

to make assumptions that cannot be verified based on the observed data. If the assumption of

missing at random is adopted, as in the methods in Chapters 3–5, the untestable assumption is

that the probability of observing any missing data pattern R = r , conditional on the full data Z ,

depends only on components of Z that are observed under this pattern. Alternatively, under a

pattern mixture model formulation, the analyst must make some sort of untestable identifiability

assumption, which induces an assumption about the nature of missing data.

In any statistical modeling and analysis context, it is natural to be concerned about robustness or

sensitivity of inferences to departures from assumptions. Thus, there has been considerable recent

interest in the case of modeling and analysis methods in the presence of missing data in what has

been referred to as sensitivity analysis. A sensitivity analysis focuses on examining and perhaps

quantifying somehow the effect of departures from assumptions. The extent to which conclusions are

stable (or not) across a range of departures can provide the analyst with important information on

how much faith to attach to the results.

In any of the approaches we have discussed, in addition to unverifiable assumptions about the miss-

ing data mechanism or assumption made to achieve identifiability, assumptions are also made on

other aspects, such as the adoption of models for the full data. In this chapter, we focus on specifi-

cally on sensitivity to assumptions on the missing data mechanism.

While approaches for modeling and analysis under untestable assumptions, in particular MAR, are

well developed, the literature on sensitivity analysis is still evolving, and no consensus view has

emerged on how best to carry out such analyses. Accordingly, our discussion here is limited to illus-

trating in the context of a few simple settings principles that underlie formal approaches to sensitivity

analysis. This demonstration will thus provide a foundation for further study of this evolving literature.

Our presentation is based on that in Chapter 5 of the National Research Council (2010) report The

Prevention and Treatment of Missing Data in Clinical Trials, which contains more details.
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Departures from a MAR assumption naturally involve a missing not at random (MNAR) mechanism

under which the probability of any missingness pattern given the full data Z depends on components

of Z that are not observed under that pattern. Different forms of such dependence, which are not

observable, could represent the observed data equally well. This suggests inspecting stability of

results across a range of plausible forms of dependence. This is the theme behind the principles

discussed in this chapter.

7.1 Fundamental problem of identifiability

Before we discuss approaches to sensitivity analysis, we consider the fundamental problem of iden-

tifiability, which in fact motivates some of these approaches.

THE FUNDAMENTAL PROBLEM: Consider the simplest setting in which the full data Z = Y , where

Y is a scalar random variable. Here, recall that the ideal full data are then (R, Z ) = (R, Y ), and,

under a selection model factorization, the joint distribution of (R, Y ) can be written as

pR,Y (r , y ) = pR|Y (r |y )pY (y ).

The observed data (R, Z(R)) = (R, RY ) are a many-to-one transformation of the full data (R, Y ), so

that the joint distribution of (R, RY ) is easily deduced from that of (R, Y ). Namely, we have

pY |R(y |1) =
pR,Y (1, y )
pr(R = 1)

=
pR|Y (1|y )pY (y )

π
, (7.1)

where

π = pr(R = 1) =
∫

pR|Y (1|y ) pY (y ) dy .

However, the missing data problem is to deduce the distribution of Y from the distribution of (R, RY ).

Because (R, RY ) is a many-to-one transformation of (R, Y ), there are many joint distributions

pR,Y (r , y ) that will lead to the same distribution for (R, RY ). Consequently, we cannot determine

from a realization of the observed data which of the many possible joint distributions for the full data

actually generated these data.

This is the fundamental problem of identifiability (or nonidentifiability) with missing data.
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ACHIEVING IDENTIFIABILITY: Under certain restrictions, we may be able to deduce a one-to-one

relationship between the joint distribution of the observed data and the distribution of the ideal full

data, where, ultimately, we are interested in deducing the distribution of Y .

Consider a selection model factorization, and assume that

logit{pr(R = 1|Y )} = α + h(Y ), (7.2)

where h(Y ) is a nontrivial (nonconstant) function of Y . We now show that, for any fixed function

h(Y ), there is indeed a one-to-one relationship between the distribution of (R, RY ), as represented

through pY |R(y |1) and pr(R = 1) = π in (7.1), and that of (R, Y ) as represented by

pR,Y (r , y ) = pR|Y (r |y )pY (y ).

For fixed h(Y ), define from (7.2)

π(Y ;α, h) = pr(R = 1|Y ) =
exp{α + h(Y )}

1 + exp{α + h(Y )}
= expit{α + h(Y )},

where as before expit(u) = eu/(1 + eu). By what are now familiar arguments (try it), we can show that

E
{

R
π(Y ;α, h)

}
= 1 E

{
R I(Y ≤ t)
π(Y ;α, h)

}
= pr(Y ≤ t) = FY (t),

say; and from (7.2)
1

π(Y ;α, h)
= 1 + exp(−α) exp{−h(Y )}.

Because
R

π(Y ;α, h)

is a function of the observed data, we have

E
{

R
π(Y ;α, h)

}
=
(∫

[1 + exp(−α) exp{−h(Y )}] pY |R(y |1) dy
)
π

=
[
1 + exp(−α)

∫
exp{−h(Y )}pY |R(y |1) dy

]
π

=
[
1 + exp(−α)E [exp{−h(Y )}|R = 1]

]
π. (7.3)

Because h(Y ) is fixed and known, we can compute both π and E [exp{−h(Y )}|R = 1] from the

distribution of the observed data.
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Thus, setting (7.3) equal to 1, which would be true if (7.2) really holds, we deduce that

exp(−α) =
(1/π − 1)

E [exp{−h(Y )}|R = 1]
. (7.4)

Similarly,

E
{

R I(Y ≤ t)
π(Y ;α, h)

}
=
(∫ t

∞
[1 + exp(−α) exp{−h(Y )}] pY |R(y |1) dy

)
π

=
{

pr(Y ≤ t |R = 1) + exp(−α)E [I(Y ≤ t) exp{−h(Y )}|R = 1]
}
π.

Substituting for exp(−α) using (7.4), we thus obtain that

E
{

R I(Y ≤ t)
π(Y ;α, h)

}
=
(

pr(Y ≤ t |R = 1) + (1/π − 1)
E [I(Y ≤ t) exp{−h(Y )}|R = 1]

E [exp{−h(Y )}|R = 1]

)
π

= πpr(Y ≤ t |R = 1) + (1− π)
E [I(Y ≤ t) exp{−h(Y )}|R = 1]

E [exp{−h(Y )}|R = 1]
. (7.5)

If (7.2) really holds for this fixed h(Y ), then it follows from (7.5) that

FY (t) = pr(Y ≤ t) = πpr(Y ≤ t |R = 1) + (1− π)
E [I(Y ≤ t) exp{−h(Y )}|R = 1]

E [exp{−h(Y )}|R = 1]
. (7.6)

Thus, for any (nontrivial) function h(Y ), we obtain a unique distribution FY (t) for all t that can be

deduced from the distribution of the observed data, as (7.5) is expressed in terms of quantities that

can be determined from the observed data.

RESULT: If we denote this distribution as FY (t , h), we see that FY (t , h) varies as we change the func-

tion h(·), yet any of these deduced distributions are consistent with the distribution of the observed

data.

• If h(Y ) ≡ 0, then (7.6) is equal to pr(Y ≤ t |R = 1). This of course is expected under MCAR.

• For any fixed h(y ), there is a one-to-one relationship between {α, FY (t)} defining the distri-

bution of the full data and pY |R(y |1) and π = pr(R = 1) defining the distribution of the observed

data. Namely, from (7.1),

pY |R(y |1) = π−1expit{α + h(Y )}dFY (y )
dy

, π =
∫

expit{α + h(Y )}dFY (y ).
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Armed with this understanding of the identifiability problem, we now consider how sensitivity analyses

can be conceived through a series of examples.

7.2 Estimation of a single mean

To begin our discussion of sensitivity analysis approaches, we consider first the simplest possible

setting discussed in EXAMPLE 1 of Section 1.4, that of estimation of the mean of a single random

variable.

Here, the full data are Z = Y , where Y is a scalar outcome, and, as usual, we define R = 1 if Y is

observed and R = 0 otherwise. Then the observed data can be written as (R, RY ), and the observed

data from a sample of N individuals are (Ri , RiYi ), i = 1, ... , N. The goal is to estimate

µ = E(Y )

based on the observed sample data.

As we discussed in EXAMPLE 1 of Section 1.4, if the missingness mechanism is MCAR, pr(R = 1|Y )

does not depend on Y , so that

pr(R = 1|Y ) = pr(R = 1) = π,

say, and pr(R = 0|Y ) = pr(R = 0) = 1− π, so that R ⊥⊥ Y . Then the complete case estimator (1.18),

µ̂c =
∑N

i=1 RiYi∑N
i=1 Ri

,

is a consistent estimator for µ.

However, if instead

pr(R = 1|Y ) = π(Y ),

say, so that pr(R = 0|Y ) = 1 − π(Y ) depends on Y , which is unobserved when R = 0, then the

missingness mechanism is MNAR. We demonstrated in EXAMPLE 1 of Section 1.4 that, under

MNAR, µ̂c is an inconsistent estimator for µ in general.
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Here, the only two possible missingness mechanisms are MCAR (which is the simplest form of MAR)

and MNAR, where the assumption of MCAR is unverifiable from the observed data. A sensitivity

analysis would thus examine the effect of deviations from MCAR on inference on µ.

ILLUSTRATION OF AN UNTESTABLE ASSUMPTION: In this simple setting, the nature of an un-

verifiable assumption is readily exhibited. Note that µ can be written as the weighted average

µ = E(Y |R = 1) pr(R = 1) + E(Y |R = 0) {1− pr(R = 1)}. (7.7)

In (7.7), without any assumptions, E(Y |R = 1) and pr(R = 1) can be estimated from the observed

data; in particular, E(Y |R = 1) can be estimated by µ̂c and pr(R = 1) by the sample proportion∑N
i=1 Ri/N.

However, E(Y |R = 0) cannot be estimated from the observed data. To appreciate the implication for

learning about µ from the observed data, suppose that Y has bounded support [ymin, ymax ]. Then all

we can say is that

ymin ≤ E(Y |R = 0) ≤ ymax ,

in which case, from (7.7), the value of µ can range from

E(Y |R = 1) pr(R = 1) + ymin {1− pr(R = 1)} to E(Y |R = 1) pr(R = 1) + ymax {1− pr(R = 1)}, (7.8)

and there is no information in the data that allows us to distinguish the value of µ within this range.

Indeed, if Y has unbounded support, then the situation is even more dire, and there are no bounds

that can be placed on inference on µ from the observed data.

This demonstrates that µ cannot be identified from the observed data without making some sort of

assumption on E(Y |R = 0). Under the MCAR (MAR) assumption R ⊥⊥ Y ,

E(Y |R = 1) = E(Y |R = 0) = µ, (7.9)

in which case µ can be identified, and the complete case estimator µ̂c , which estimates E(Y |R = 1), is

then a consistent estimator for µ. However, this or any other assumption on E(Y |R = 0) is untestable

based on the observed data.

We now consider approaches to sensitivity analysis that are suggested by the foregoing develop-

ments.
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PATTERN MIXTURE MODEL APPROACH: Note that (7.7) is the simplest version of a pattern mix-

ture model. Following the same principles discussed in Chapter 6, we can make an assumption

linking E(Y |R = 1) and E(Y |R = 0) and thereby identify E(Y |R = 0). In doing so, a framework for

sensitivity analysis is introduced, as we now demonstrate.

To link E(Y |R = 1) and E(Y |R = 0), assume that

E(Y |R = 0) = E(Y |R = 1) + ∆. (7.10)

Under (7.10), for any fixed value of ∆, it is clearly possible to estimate E(Y |R = 0) from the observed

data by adding ∆ to the estimate of E(Y |R = 1).

A generalization of (7.10) that accommodates different types of outcomes Y is

E(Y |R = 0) = g−1[g{E(Y |R = 1)} + ∆], (7.11)

where g( · ) is a strictly increasing function mapping values from the range of Y to the real line.

For example, g(u) = u as in (7.10) is natural for a continuous outcome, while g(u) = logit(u) =

log{u/(1−u)} is appropriate for binary outcome, in which case ∆ is the log odds ratio comparing the

odds of Y = 1 among individuals with R = 0 and R = 1.

In (7.10) and more generally (7.11), ∆ can be viewed as a sensitivity parameter. Each value of

∆ corresponds to a different (unverifiable) assumption about E(Y |R = 0). Substituting in (7.7), we

have

µ = E(Y |R = 1) pr(R = 1) + g−1[g{E(Y |R = 1)} + ∆] {1− pr(R = 1)}. (7.12)

Note that µ = µ(∆) in (7.12) can be viewed as a function of ∆, and, for any fixed ∆, µ can then be

estimated by substituting the estimates of E(Y |R = 1) and pr(R = 1) based on the data.

In particular, recalling that µ̂c is an estimator for E(Y |R = 1) and π̂ =
∑N

i=1 Ri/N is an estimator for

pr(R = 1), in the case where g(u) = u, for example, for fixed ∆, the estimator µ̂(∆), say, is

µ̂(∆) = µ̂cπ̂ + (µ̂c + ∆)(1− π̂) = µ̂c + ∆(1− π̂). (7.13)

It is straightforward to derive approximate large sample standard errors for µ̂(∆) and associated

confidence intervals for µ(∆).
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Taking ∆ = 0 in (7.12) yields (7.9) and thus

µ = E(Y |R = 1) pr(R = 1) + E(Y |R = 1) {1− pr(R = 1)} = E(Y |R = 1),

which corresponds to MCAR/MAR from above. This suggests that a sensitivity analysis to the MAR

assumption by obtaining estimates µ̂(∆) and corresponding confidence intervals over a range of

∆ values that includes ∆ = 0. The extent to which the estimator and its confidence interval change

across a plausible range of value of ∆ reflects the sensitivity of inferences to departures from the

MCAR/MAR assumption.

SELECTION MODEL APPROACH: Another approach is to introduce instead a sensitivity parameter

in a model for the missingness mechanism. For example, consider the model

logit{pr(R = 1|Y )} = α + δY . (7.14)

In (7.14), δ = 0 corresponds to MCAR, while when δ 6= 0 the odds ratio associated with a unit change

in Y is
pr(R = 1|Y = y + 1)/pr(R = 0|Y = y + 1)

pr(R = 1|Y = y )/pr(R = 0|Y = y )
= exp(δ).

Thus, if δ > 0, the probability that Y is not missing increases with the value of Y , and vice versa.

The magnitude of δ then dictates the extent of departure from MCAR, making δ a natural sensitivity

parameter.

Of course, we cannot estimate α and δ in (7.14) jointly from the observed data because Y is missing

whenever R = 0. However, if we could fit (7.14) to the observed data for fixed δ and then use the

fitted (7.14) to estimate µ, e.g., via inverse probability weighting, we would have the basis for a

sensitivity analysis to departures from MCAR in which we vary δ across a plausible range including

δ = 0.

Accordingly, we first examine if, assuming (7.14), we can estimate α and consequently µ for fixed δ.

Write (7.14) equivalently as

pr(R = 1|Y ) = expit(α + δY ) = π(Y ;α, δ),

say.
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Assuming that the model (7.14) is correctly specified, it is of course straightforward that

Eα,δ

{
R

π(Y ;α, δ)

}
= 1. (7.15)

If we write

E
{

R
π(Y ;α, δ)

}
= q(α, δ),

then, for any fixed δ, then, under (7.14), the true value α0, say, of α is such that

q(α0, δ) = 1.

In this case, for fixed δ, we have

µ = E
{

RY
π(Y ;α0, δ)

}
, (7.16)

which can be estimated from the observed data.

Consequently, if we are willing to entertain the model in (7.14), for fixed δ, consistent estimators for

α and thereby µ can be obtained from the empirical counterparts of (7.15) and (7.16) based on the

observed data (Ri , RiYi ), i = 1, ... , N. Namely, noting that

1/π(Y ;α, δ) = 1 + exp{−(α + δY )}, (7.17)

an estimator α̂(δ) for α for fixed δ can be obtained by solving in α

N∑
i=1

(
Ri [1 + exp{−(α + δYi )}]− 1

)
= 0, (7.18)

where we emphasize dependence on the fixed δ, from whence it follows that an estimator for µ for

fixed δ is

µ̂(δ) = N−1
N∑

i=1

RiYi

(
1 + exp[−{α̂(δ) + δYi}]

)
. (7.19)

By algebra, from (7.18)

exp{−α̂(δ)} =
∑N

i=1(1− Ri )∑N
i=1 Ri exp(−δYi )

,

so that, from (7.19)

µ̂(δ) = N−1
N∑

i=1

RiYi

{
1 +

∑N
`=1(1− R`)∑N

`=1 R` exp(−δY`)

}
exp(−δYi ).
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In fact, note that, writing (7.18) and (7.19) for fixed δ as the set of stacked estimating equations

N∑
i=1

{
RiYi

(
1 + exp[−{α(δ) + δYi}]

)
− µ(δ)

}
= 0

N∑
i=1

N∑
i=1

{
Ri

(
1 + exp[−{α(δ) + δYi}]

)
− 1
}

= 0,

it is clear that α̂(δ) and µ̂(δ) are M-estimators and hence are asymptotically normal with asymp-

totic covariance matrix that can be estimated by the usual sandwich estimator deduced from the

general formulation in (1.42).

The corresponding sensitivity analysis can be based on the foregoing results. This would entail

obtaining µ̂(δ) and a corresponding confidence interval over a plausible range of values for δ

about the value δ = 0 (MCAR/MAR). The extent to which the estimator and its confidence interval

change as δ changes provide an indication of the sensitivity of inferences to departures from the

MCAR assumption.

IMPLICATION: It is of interest to deduce the range of µ(δ) values induced from the distribution of

the observed data as δ → ±∞.

Assume that the support of Y is [ymin, ymax ] as before. Then the distribution of the observed data can

be characterized by

π = pr(R = 1) and pY |R(y |1),

where pY |R(y |r ) is the conditional density of Y given R evaluated at R = r , and ymin ≤ y ≤ ymax .

Consequently,

q(α, δ) = E
{

R
π(Y ;α, δ)

}
= E

[
E
{

R
π(Y ;α, δ)

∣∣∣∣R}] =
{∫ ymax

ymin

1
π(y ;α, δ)

pY |R(y |1) dy
}
π

=
(∫ ymax

ymin

[exp{−(α + δy )} + 1] pY |R(y |1) dy
)
π

=
[
exp(−α)

∫ ymax

ymin

exp(−δy ) pY |R(y |1) dy + 1
]
π

Setting q(α, δ) = 1, we then obtain that α(δ) satisfies

exp{−α(δ)}
∫ ymax

ymin

exp(−δy ) pY |R(y |1) dy =
(

1
π
− 1
)

. (7.20)
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Similarly,

µ(δ) = E
{

RY
π(Y ;α, δ)

}
=
(∫ ymax

ymin

y [exp{−(α + δy )} + 1] pY |R(y |1) dy
)
π

=
[
{exp(−α)

∫ ymax

ymin

y exp(−δy ) pY |R(y |1) dy + E(Y |R = 1)
}
π,

which we can write as

E(Y |R = 1)π+

exp(−α)
∫ ymax

ymin

exp(−δy ) pY |R(y |1) dy


∫ ymax

ymin

y exp(−δy ) pY |R(y |1) dy∫ ymax

ymin

exp(−δy ) pY |R(y |1) dy


 π. (7.21)

Using (7.20), it follows that (7.21) is equal to

E(Y |R = 1)π +
(

1
π
− 1
)
π


∫ ymax

ymin

y exp(−δy ) pY |R(y |1) dy∫ ymax

ymin

exp(−δy ) pY |R(y |1) dy

 . (7.22)

The term in braces in (7.22) is a weighted average of Y from ymin to ymax , where the weighting is by

exp(−δy ) pY |R(y |1). Thus, as δ →∞, the mass of the weighting converges near the minimum value

ymin, so that the term in braces converges to ymin. It follows that

µ(δ)→ E(Y |R = 1)π + (1− π)ymin.

Similarly, as δ → −∞,

µ(δ)→ E(Y |R = 1)π + (1− π)ymax .

These are exactly the same limits deduced earlier directly from the pattern mixture perspective in

(7.8), which were sharp bounds.

7.3 Estimation of a single mean with auxiliary data

Consider now the case where we continue to be interested in the mean µ = E(Y ) for a scalar outcome

Y that can be missing, but additional auxiliary data V are always available. That is, the full data are

now Z = (Y , V ), and R = (R1, R2)T , where R takes on the two possible values R = (1, 1)T when Y

is observed and R = (0, 1)T when Y is missing. As in EXAMPLE 1 of Section 1.4 and Section 5.1,

let C = 1 if R = (1, 1)T , indicating a complete case, and C = 0 if R = (0, 1)T , indicating that Y is

missing.
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The observed data are then (C, CY , V ), and the observed sample data are (Ci , CiYi , Vi ), i = 1, ... , N.

From Sections 1.4 and 5.1, we have seen that it is possible to obtain a consistent estimator for µ

under the assumption that, as in (1.21) and (5.2), missingness of Y depends only on V and not on

the possibly unobserved Y ,

pr(C = 1|Y , V ) = pr(C = 1|V ) = π(V ), (7.23)

so that C ⊥⊥ Y |V , and the missingness mechanism in MAR. Equivalently, (7.23) implies that

E(Y |V , C = 1) = E(Y |V , C = 0). (7.24)

Of course, the MAR assumption is unverifiable based on the observed data, and it is not possible to

estimate (identify) E(Y |V , C = 0) in (7.24) based on the observed data without such an assumption.

We now sketch how sensitivity analyses to the MAR assumption can be obtained.

PATTERN MIXTURE MODEL APPROACH: As in the situation with no auxiliary data in the preced-

ing section, we can make an assumption linking E(Y |V , C = 1) and E(Y |V , C = 0) and identify

E(Y |V , C = 0). With g( · ) a strictly increasing function as before, analogous to (7.11), one can

specify

E(Y |V , C = 0) = g−1[g{ν(V )} + ∆], (7.25)

say, where ν(V ) = E(Y |V , C = 1). As in (7.10) and (7.11), ∆ is a sensitivity parameter, and

each value of ∆ represents a different, untestable assumption about E(Y |V , C = 0), with ∆ = 0

corresponding to MAR as in (7.24).

To illustrate how the sensitivity analysis would proceed, suppose that Y is continuous and g(u) = u.

For definiteness, one must specify the relationship between Y and V for C = 1 represented by ν(V ).

For example, a simple choice of ν( · ) is a linear regression model; i.e.,

ν(V ; γ) = E(Y |V , C = 1) = γ0 + γT
1 V . (7.26)

The regression model (7.26) can be fitted based on the observed sample data for individuals for

whom C = 1; that is, with both Y and V observed, yielding estimators γ̂0 and γ̂1.

With this choice of g( · ) and the specification (7.26), the linkage relationship (7.25) becomes

E(Y |V , C = 0) = γ0 + γT
1 V + ∆. (7.27)
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Under (7.27), for any V and fixed ∆, an estimator for E(Y |V , C = 0) can be derived as

γ̂0 + γ̂T
1 V + ∆,

so that E(Y |V , C = 0) is imputed as the predicted value of E(Y |V , C = 1) plus the shift ∆.

REMARKS:

• The linkage formulation (7.25) assumes that the difference between E(Y |V , C = 0) and

E(Y |V , C = 1) depends on a constant ∆ for all V and thus does not depend on V . A more

flexible specification would allow such dependence; for example, for general g( · ),

E(Y |V , C = 0) = g−1[g{ν(V )} + (∆0 + ∆T
1 V )].

For continuous Y and g(u) = u, this becomes

E(Y |V , C = 0) = ν(V ) + (∆0 + ∆T
1 V ).

In either case, (∆0,∆T
1 )T is a bivariate sensitivity parameter characterizing the sensitivity

function (∆0 + ∆T
1 V ).

In principle, any general sensitivity function s(V ;∆) could be specified. It is important to

recognize that the form of s(V ;∆) cannot be validated based on the observed data.

• The choice of model for ν(V ) = E(Y |V , C = 1) can also be made more flexible than the

simple linear specification in (7.26). Note that the form of ν(V ) can be validated based on

the observed data, as it characterizes the relationship between Y and V among individuals for

whom both are observed (C = 1).

A similar formulation in the case where Y is binary would proceed in the obvious manner with g(u) =

logit(u), where a model such as

logit{ν(V ; γ)} = γ0 + γT
1 V

for E(Y |V , C = 1) would be reasonable.

191



CHAPTER 7 ST 790, MISSING DATA

IMPLEMENTATION: The sensitivity analysis based on the foregoing developments would then pro-

ceed as follows. Let π = pr(C = 1), which of course can be estimated by π̂ = N−1∑N
i=1 Ci .

1. Specify a model ν(V ) = ν(V ; γ) for E(Y |V , C = 1) and a sensitivity function s(V ;∆). Fit ν(V ; γ)

to the observed data from individuals for whom Y is observed (C = 1) to obtain γ̂.

2. Analogous to (7.12), using the fact that

E(Y |C = c) = E{E(Y |V , C = c)|C = c}

for c = 0, 1 and assuming that the model ν(V ) is correctly specified, we have

µ = π E(Y |C = 1) + (1− π) E(Y |C = 0)

= π E{ν(V )|C = 1} + (1− π) E
(

g−1[g{ν(V )} + s(V ;∆)]
∣∣∣C = 0

)
. (7.28)

To obtain an estimator for µ based on (7.28), one must substitute estimators for each compo-

nent on the right hand side as follows.

Given the fitted model ν(V ; γ̂), E{ν(V )|C = 1} in the first term on the right hand side of (7.28)

can be estimated by the sample mean

N∑
i=1

Ciν(Vi ; γ̂)

N∑
i=1

Ci

. (7.29)

The second term on the right hand side of (7.28) likewise can be estimated by the sample

mean
N∑

i=1

(1− Ci )g−1[g{ν(Vi ; γ̂)} + s(Vi ;∆)]

N∑
i=1

(1− Ci )

; (7.30)

note that in (7.30) E(Y |V , C = 1) is being imputed for individuals i for whom Ci = 0.

The estimator for µ for fixed ∆, µ̂(∆), say, is then obtained by substituting π̂, (7.29), and (7.30)

into (7.28). Evidently, it is possible to derive asymptotic standard errors for µ̂(∆) and associ-

ated confidence intervals.
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In the case of g(u) = u, for example, the estimator is

µ̂(∆) = π̂



N∑
i=1

Ciν(Vi ; γ̂)

N∑
i=1

Ci


+ (1− π̂)


N∑

i=1

(1− Ci ){ν(Vi ; γ̂) + s(Vi ;∆)}

N∑
i=1

(1− Ci )

 , (7.31)

where we emphasize that (7.31) depends on the fixed ∆.

When ∆ = 0, so that s(V ;∆) = 0, corresponding to MAR, (7.31) becomes

µ̂(0) = N−1
N∑

i=1

ν(Vi ; γ̂),

the sample average of the fitted model ν(V ; γ) for E(Y |V , C = 1). Under MAR, E(Y |V , C = 1) =

E(Y |V , C = 0), and this is a sensible estimator for E(Y ) under the assumption that the model is

correctly specified.

As in the simpler case in Section 7.2, it follows that a sensitivity analysis to the MAR assumption

would involve calculating estimates µ̂(∆) and corresponding confidence intervals over a range of

∆ values that includes ∆ = 0. The extent to which the estimator and its confidence interval change

across a plausible range of value of ∆ reflects the sensitivity of inferences to departures from the

MAR assumption.

SELECTION MODEL APPROACH: Analogous to the development in Section 7.2, we can instead

incorporate a sensitivity parameter(s) in a model for the missingness mechanism.

Recall from (7.23) that the MAR assumption is

pr(C = 1|Y , V ) = pr(C = 1|V ) = π(V ),

so that C ⊥⊥ Y |V , and it is of course possible to estimate pr(C = 1|V ) from the observed data. The

MAR assumption can be written equivalently as

logit{pr(C = 1|Y , V )} = logit{pr(C = 1|V )} = α(V ), (7.32)

say, so that

π(V ) =
exp{α(V )}

1 + exp{α(V )}
.

Here, π(V ) and equivalently α(V ) characterize the nature of the MAR assumption.

Generalizing (7.14), we can consider a model of the form

logit{pr(C = 1|Y , V )} = α(V ) + δ(Y , V ) (7.33)

for some fixed sensitivity function δ(Y , V ).

193



CHAPTER 7 ST 790, MISSING DATA

For example, a simple such sensitivity function depends only on the potentially unobserved Y ,

δ(Y , V ) = δY (7.34)

for fixed value of a sensitivity parameter δ. Of course, more exotic sensitivity functions involving a

vector of sensitivity parameters δ and both Y and V could be selected.

Likewise, one would typically adopt a parametric model for α(V ); for example, one might adopt a

linear model, e.g.,

α(V ) = α0 + αT
1 V ; (7.35)

more general nonlinear parametric models are of course possible.

As in the simpler case in the previous section, for fixed δ(Y , V ) in (7.33), α(V ) and µ = E(Y ) are

identifiable from the observed data. To see this, define from the model in (7.33),

π(Y , V ;α, δ) = expit{α(V ) + δ(Y , V )}, (7.36)

from which, analogous to (7.17),

1/π(Y , V ;α, δ) = 1 + exp[−{α(V ) + δ(Y , V )}].

Then, analogous to (7.15) in the simpler setting in Section7.2, assuming that the model selected for

(7.33) is correctly specified, we have

E
{

C
π(Y , V ;α, δ)

∣∣∣∣V = v
}

= 1 (7.37)

(verify). Writing (7.37) as

E
[

E
{

C
π(Y , V ;α, δ)

∣∣∣∣C, V = v
}∣∣∣∣V = v

]
= 1 for all v ,

and letting pY |V ,C(y |v , c) be the conditional density of Y given C and V evaluated at c and v , it

follows that (7.37) can be written as[
exp{−α(v )}

∫
exp{−δ(y , v )}pY |V ,C(y |v , 1) dy + 1

]
pr(C = 1|V = v ) = 1, (7.38)

where pr(C = 1|V ) is the true probability that C = 1 given V , which can be modeled and estimated

and is thus identifiable from the observed data.

Note then that, from (7.38), for fixed δ(Y , V ), α(V ) is identifiable from the observed data, as it can

be written as

exp{−α(V )} =
{

1
pr(C = 1|V )

− 1
}
/E [exp{−δ(Y , V )}|V , C = 1] ,

for which the right hand side is identifiable.
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Note also that

µ = E
{

CY
π(Y , V ;α, δ)

}
. (7.39)

The foregoing arguments demonstrate that it is thus possible to evaluate sensitivity to the MAR

assumption to the specific departure from this assumption embodied in the sensitivity function

δ(Y , V ) using the observed data.

IMPLEMENTATION: We discuss how such a sensitivity analysis can be implemented in the specific

case of the sensitivity function

δ(Y , V ) = δY

in (7.34) and

α(V ) = α0 + αT
1 V

in (7.35). Here, the assumed model (7.33) that forms the basis for the sensitivity analysis is

logit{pr(C = 1|Y , V )} = α0 + αT
1 V + δY , π(Y , V ;α, δ) = expit(α0 + αT

1 V + δY ). (7.40)

For fixed δ, the strategy is to estimate α(δ) = {α0(δ),αT
1 (δ)}T , say, and then use this to estimate µ(δ).

To estimate α(δ) under the assumed model (7.40), we take advantage of the fact that (verify)

E
[
h(V )

{
C

π(Y , V ;α, δ)
− 1
}]

= 0, (7.41)

where h(V ) is a vector of functions of V whose dimension is the same as the number of unknown

parameters in α.

Considering the term in brackets in (7.41) as an unbiased estimating function, an estimator for α(δ)

for fixed δ can be obtained as the solution to the estimating equation

N∑
i=1

h(Vi )
(

Ci [1 + exp{−(α0 + αT
1 Vi )} + δYi ]− 1

)
= 0. (7.42)

A possible choice for h(V ) in (7.42) is to take the partial derivative of α(V ) with respect to the

parameters. Here, this leads to

h(V ) =

 1

V

 .
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Another suggestion follows from the fact that the estimating equation (7.42) can be written as

N∑
i=1

h(Vi )
π(Yi , Vi ;α, δ)

{Ci − π(Yi , Vi ;α, δ)} = 0. (7.43)

Recall that pr(C = 1|V ) can be estimated based on the observed data; this can be accomplished by

positing a model

logit{π̃(V ; α̃)} = α̃0 + α̃T
1 V ,

which can be fitted by solving the usual score equations for logistic regression; namely,

N∑
i=1

 1

Vi

{Ci − expit(α̃0 + α̃T
1 Vi )

}
= 0

in α̃0, α̃1 to obtain estimators ̂̃α0, ̂̃α1. Then choose

h(V ) =

 1

V

 π̃(V ; ̂̃α).

Substituting in (7.43), this choice leads to the estimating equation

N∑
i=1

 1

Vi

 π̃(Vi ; ̂̃α)
π(Yi , Vi ;α, δ)

{Ci − π(Yi , Vi ;α, δ)} = 0.

This choice has the property that, in the particular case δ = 0, corresponding to MAR, the resulting

estimator for α reduces to the MLE, which is efficient.

Once an estimator α̂(δ) = {α̂0(δ), α̂T
1 (δ)}T is obtained by one of these methods for fixed δ, the corre-

sponding estimator µ(δ) is obtained as, using (7.39), as

µ̂(δ) = N−1
N∑

i=1

CiYi

π{Yi , Vi ; α̂(δ), δ)}
.

The asymptotic variance of µ̂(δ) can be estimated via the sandwich technique in a manner similar

to that described previously, and associated confidence intervals derived.

As in the simpler case in Section 7.2, a sensitivity analysis to the MAR assumption would involve

calculating estimates µ̂(δ) and corresponding confidence intervals over a range of δ values that

includes δ = 0 and examining changes in the estimator and its associated confidence interval.
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7.4 Longitudinal data with dropout

SELECTION MODEL APPROACH: We sketch the main features of a selection model approach

to sensitivity analysis in this setting. A pattern mixture approach is described in Chapter 5 of the

National Research Council (2010) report; however, there are some errors in the presentation, so we

do not consider this here.

Consider the situation in Section 5.3 where longitudinal data (Yj , Vj ), j = 1, ... , T , on an outcome and

auxiliary covariates are to be collected at time points t1 < · · · < tT , where t1 represents baseline. In

addition, a set of baseline covariates X is collected. The full data are then

Z = {(Y1, V1), ... , (YT , VT ), X},

and, writing Y = (Y1, ... , YT )T , interest focuses on a semiparametric model

E(Y |X = x) = µ(x ;β) =


µ1(x ;β)

...

µT (x ;β)

 . (7.44)

As in Section 5.3, suppose that some individuals drop out, resulting in a monotone missingness

pattern. Define (R1, ... , RT , RT +1)T as usual. Assume that X is always observed, as is (Y1, V1) (R1 = 1

and RT+1 = 1), but, if an individual drops out at time tj , j = 2, ... , T , indicated by the variable D = j , so

that s/he is last seen at time tj−1, the history

Hj−1 = Z(j) = {X , (Y1, V1), ... , (Yj−1, Vj−1)}

is observed and {(Yj , Vj ) ... , (YT , VT )} is missing. As before, D = T + 1 corresponds to observing

the full data.

Under the MAR assumption, as discussed in Section 5.3, it is assumed that the cause-specific

hazard function of dropout given in (5.30),

λj (Z ) = pr(D = j |D ≥ j , Z ), j = 2, ... , T ,

satisfies

λj (Z ) = pr(D = j |D ≥ j , Z ) = pr(D = j |D ≥ j , Hj−1) = λj (Hj−1), j = 2, ... , T , (7.45)

so that, for individuals who are at risk for dropping out at time tj , the probability of doing so as a

function of the full data depends only on the observed history prior to tj and not on observations

at tj or in the future.
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Under MAR, as described in Section 5.3, one would posit models

λj (Hj−1;ψ),

say, where for each j dependence on an entire collection of parameters ψ is likely through a j-specific

subset. An obvious choice would be a logistic regression model for each j = 2, ... , T , e.g.,

λj (Hj−1;ψ) =
exp{αj (Hj−1;ψ)}

1 + exp{αj (Hj−1;ψ)}
,

or, equivalently, logit{λj (Hj−1;ψ)} = αj (Hj−1;ψ), for functions αj (Hj−1;ψ), j = 2, ... , T .

A sensitivity analysis introduces a sensitivity function into the dropout specification. Specifically,

we might assume

logit{λj (Z )} = αj (Hj−1) + δj (Z ), j = 2, ... , T , (7.46)

where δj (Z ) is a sensitivity function involving components of Z beyond those in Hj−1. Clearly,

δj (Z ) = 0 for all j = 2, ... , T corresponds to the MAR assumption.

As in the previous sections, in specifying the models (7.46), in practice, one would adopt parametric

functions αj (Hj−1;ψ) and choose interpretable sensitivity functions for each j depending on a finite

number of parameters. In this setting, choice of the sensitivity functions is complicated by the fact

that, for each j , possible dependence on components of Z beyond those in Hj−1 could take on many

different forms.

One popular approach in this case is to make the assumption of so-called non future dependence

(NFD). Here, one restricts attention to departures from MAR that arise because the hazards of

dropping out at tj , λj (Z ), depend only on the history Hj−1 and the possibly unobserved values (Yj , Vj )

at tj but not on additional components of Z in the future; that is

λj (Z ) = λ(Hj−1, Yj , Vj ), (7.47)

where this notation emphasizes the dependence on (Yj , Vj ).

The NFD assumption is of course not identifiable from the observed data. It has practical appeal

in the sense that it seems counterintuitive that data that are not observed in the future should be

implicated in whether or not an individual drops out at time j . Of course, it could be that dropout

depends on variables not contained in Z that are correlated with future observations, which would

render the NFD assumption suspect. We restrict attention here to the NFD assumption, recognizing

that it may be an oversimplification.
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Accordingly, we consider models (7.46) consistent with the NFD assumption (7.47) of the form

logit{λj (Z )} = αj (Hj−1;ψ) + δj (Hj−1, Yj , Vj ), j = 2, ... , T , (7.48)

so that we can write

λj (Z ) = λj (Hj−1, Yj , Vj ).

In (7.48), then, δj (Hj−1, Yj , Vj ), j = 2, ... , T , are fixed sensitivity functions that incorporate the NFD

assumption. For example, we might take

δj (Hj−1, Yj , Vj ) = δYj ,

in which case dependence on unobserved components of Z is through the outcome at tj .

Alternatively, under NFD, a sensitivity function that acknowledges that the dependence of the miss-

ingness mechanism on the unobserved Yj at tj might be different for different values of baseline

covariates is

δj (Hj−1, Yj , Vj ) = (δ0 + δT
1 X )Yj .

This might be relevant in a clinical trial where X includes treatment assignment, and there is

concern that missingness is differential by treatment.

The parameter of interest is β in the semiparametric model (7.44). In Chapter 5, we discussed

the lass of weighted generalized estimating equations that can be solved under MAR to obtain

estimators for β. We present the basic idea underlying a sensitivity analysis for β by focusing on

the general form of augmented inverse probability weighted complete case estimating functions

of the form in (5.40) but under the NFD assumption,

RT

πT (HT−1, YT , VT )

T∑
j=1

Aj (X ){Yj−µj (X ;β)}+
T−1∑
j=1

{
Rj

πj (Hj−1, Yj , Vj )
−

Rj+1

πj+1(Hj , Yj+1, Vj+1)

}
fj (Hj ). (7.49)

In (7.49),

πj (Hj−1, Yj , Vj ) =
j∏
`=1

{1− λ`(H`−1, Y`, V`)}, j = 2, ... , T .

From (7.48), if we fix the sensitivity functions δj (Hj−1, Yj , Vj ), j = 2, ... , T , if we can then estimate ψ

in αj (Hj−1;ψ) for j = 2, ... , T from the observed data, we can substitute in (7.49) to obtain estimators

β(δ), say.
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Motivated by the estimating equations for ψ in (5.43), consider the estimating equations

N∑
i=1

T∑
j=2

Ri ,j−1hj (Hi ,j−1;ψ)
{

I(Di = j)
λj (Hi ,j−1, Yij , Vij ;ψ), δ)

− 1
}

= 0,

which can also be written as

N∑
i=1

T∑
j=2

Ri ,j−1hj (Hi ,j−1;ψ)
{

I(Di = j)
(
1 + exp[−{αj (Hi ,j−1;ψ) + δj (Hi ,j−1, Yij , Vij )}]

)
− 1
}

= 0 (7.50)

for functions hj (Hj−1;ψ).

The recommended choice is

hj (Hj−1;ψ) =
∂

∂ψ
{αj (Hi ,j−1;ψ)}λj (Hj−1; ψ̂, δ = 0),

where ψ̂ are the MLEs for ψ when δ = 0 found by solving (5.43).

The sensitivity analysis would then proceed in a manner analogous to that described in the previous

sections.

7.5 Discussion

As noted at the beginning of this chapter, sensitivity analysis is an evolving area. We have reviewed

the basic principles underlying popular approaches to sensitivity analysis. Chapter 5 of the National

Research Council (2010) report presents examples of graphical displays, in particular plots of sensi-

tivity parameters such as ∆ and δ against parameter estimates and confidence intervals to provide

a visual depiction of sensitivity. Other tactics have been proposed in the literature and were not

discussed here.

The National Research Council (2010) report recommends that sensitivity analyses examining de-

partures from an assumed missing data mechanism should be a mandatory part of the reporting of

primary findings of clinical trials. The literature on this topic will undoubtedly continue to grow.
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